Stabilité EBSBLa stabilité EBSB est une forme particulière de stabilité des systèmes dynamiques étudiés en automatique, en traitement du signal et plus spécifiquement en électrotechnique. EBSB signifie Entrée Bornée/Sortie Bornée : si un système est stable EBSB, alors pour toute entrée bornée, la sortie du système l’est également. Un système linéaire invariant et à temps continu dont la fonction transfert est rationnelle et strictement propre est stable EBSB si et seulement si sa réponse impulsionnelle est absolument intégrable, i.
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Filtre numériqueEn électronique, un filtre numérique est un élément qui effectue un filtrage à l'aide d'une succession d'opérations mathématiques sur un signal discret. C'est-à-dire qu'il modifie le contenu spectral du signal d'entrée en atténuant ou éliminant certaines composantes spectrales indésirées. Contrairement aux filtres analogiques, qui sont réalisés à l'aide d'un agencement de composantes physiques (résistance, condensateur, inductance, transistor, etc.
Pole–zero plotIn mathematics, signal processing and control theory, a pole–zero plot is a graphical representation of a rational transfer function in the complex plane which helps to convey certain properties of the system such as: Stability Causal system / anticausal system Region of convergence (ROC) Minimum phase / non minimum phase A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter,
Crossover (audio)Le crossover est un filtre utilisé en sonorisation pour séparer des plages de fréquences d'un signal audio. Cet effet entre dans une catégorie de filtres électroniques conçus spécifiquement pour des utilisations dans des applications audio. Un crossover est un filtre séparant deux bandes de fréquences, soit pour des hautparleurs, soit pour des traitements différenciés du signal audio. L'utilisation principale est pour séparer les sons les plus graves d'un signal (généralement inférieurs à 120 Hz) afin de les diriger spécialement vers un subwoofer (ampli+sub).
Transformation en ZLa transformation en Z est un outil mathématique de l'automatique et du traitement du signal, qui est l'équivalent discret de la transformation de Laplace. Elle transforme un signal réel du domaine temporel en un signal représenté par une série complexe et appelé transformée en Z. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Filtre de TchebychevLes filtres de Tchebychev sont un type de filtre caractérisé par l'acceptation d'une ondulation, ou bien en bande passante ou bien en bande atténuée. Dans le premier cas, on parle de filtres de Tchebychev de type 1 ou directs, dans le second, de filtres de Tchebychev de type 2 ou inverses. Les filtres qui présentent une ondulation à la fois en bande passante et en bande atténuée sont appelés filtres elliptiques.
Filtre de ButterworthUn filtre de Butterworth est un type de filtre linéaire, conçu pour posséder un gain aussi constant que possible dans sa bande passante. Les filtres de Butterworth furent décrits pour la première fois par l'ingénieur britannique . Le gain d'un filtre de Butterworth est le plus constant possible dans la bande passante et tend vers 0 dB dans la bande de coupure. Sur un diagramme de Bode logarithmique, cette réponse décroît linéairement vers -∞, de -6 dB/octave (-20 dB/décade) pour un filtre de premier ordre, -12 dB/octave soit -40 dB/decade pour un filtre de second ordre, -18 dB/octave soit -60 dB/decade pour un filtre de troisième ordre, etc.
Digital biquad filterIn signal processing, a digital biquad filter is a second order recursive linear filter, containing two poles and two zeros. "Biquad" is an abbreviation of "biquadratic", which refers to the fact that in the Z domain, its transfer function is the ratio of two quadratic functions: The coefficients are often normalized such that a0 = 1: High-order infinite impulse response filters can be highly sensitive to quantization of their coefficients, and can easily become unstable.