Troisième problème de Hilbertvignette|Illustration de l'invariant de Dehn Le troisième problème de Hilbert est l'un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. David Hilbert conjectura que ce n'était pas toujours vrai. Ce fut confirmé dans l'année par son élève, Max Dehn, qui fournit un contre-exemple. Pour le problème analogue concernant les polygones, la réponse est affirmative. Le résultat est connu sous le nom du théorème de Wallace-Bolyai-Gerwien.
Problème du mot pour les groupesEn mathématiques, plus précisément dans le domaine de la théorie combinatoire des groupes, le problème du mot pour un groupe de type fini G est le problème algorithmique de décider si deux mots en les générateurs du groupe représentent le même élément. Plus précisément, si X un ensemble fini de générateurs pour G, on considère le langage formel constitué des mots sur X et son ensemble d'inverses formels qui sont envoyés par l'application naturelle sur l'identité du groupe G.
Dehn invariantIn geometry, the Dehn invariant is a value used to determine whether one polyhedron can be cut into pieces and reassembled ("dissected") into another, and whether a polyhedron or its dissections can tile space. It is named after Max Dehn, who used it to solve Hilbert's third problem by proving that not all polyhedra with equal volume could be dissected into each other. Two polyhedra have a dissection into polyhedral pieces that can be reassembled into either one, if and only if their volumes and Dehn invariants are equal.
Théorie géométrique des groupesLa théorie géométrique des groupes est un domaine des mathématiques pour l'étude des groupes de type fini à travers les connexions entre les propriétés algébriques de ces groupes et les propriétés topologiques et géométriques des espaces sur lesquels ils opèrent. Les groupes sont vus comme des ensembles de symétries ou d'applications continues sur ces espaces. Une autre idée importante de la théorie géométrique des groupes est de considérer les groupes de type fini eux-mêmes comme des objets géométriques, généralement via le graphe de Cayley du groupe étudié.
Groupe hyperboliqueEn théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Small cancellation theoryIn the mathematical subject of group theory, small cancellation theory studies groups given by group presentations satisfying small cancellation conditions, that is where defining relations have "small overlaps" with each other. Small cancellation conditions imply algebraic, geometric and algorithmic properties of the group. Finitely presented groups satisfying sufficiently strong small cancellation conditions are word hyperbolic and have word problem solvable by Dehn's algorithm.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Conjugacy problemIn abstract algebra, the conjugacy problem for a group G with a given presentation is the decision problem of determining, given two words x and y in G, whether or not they represent conjugate elements of G. That is, the problem is to determine whether there exists an element z of G such that The conjugacy problem is also known as the transformation problem. The conjugacy problem was identified by Max Dehn in 1911 as one of the fundamental decision problems in group theory; the other two being the word problem and the isomorphism problem.
Théorie combinatoire des groupesEn mathématiques, la théorie combinatoire des groupes est la théorie des groupes libres et des présentations d'un groupe par générateurs et relations. Elle est très utilisée en topologie géométrique, le groupe fondamental d'un complexe simplicial héritant, d'une façon naturelle et géométrique, d'une telle présentation. Elle est aujourd'hui englobée en grande partie par la théorie géométrique des groupes, qui utilise de plus des techniques extérieures à la combinatoire.