Espace de HardyLes espaces de Hardy, dans le domaine mathématique de l'analyse fonctionnelle, sont des espaces de fonctions analytiques sur le disque unité D du plan complexe. Soit f une fonction holomorphe sur D, on sait que f admet un développement en série de Taylor en 0 sur le disque unité : On dit alors que f est dans l'espace de Hardy H(D) si la suite appartient à l. Autrement dit, on a : On définit alors la norme de f par : La fonction appartient à H(D), par convergence de la série (série de Riemann convergente).
FenêtrageEn traitement du signal, le fenêtrage est utilisé dès que l'on s'intéresse à un signal de longueur volontairement limitée. En effet, un signal réel ne peut qu'avoir une durée limitée dans le temps ; de plus, un calcul ne peut se faire que sur un nombre fini de points. Pour observer un signal sur une durée finie, on le multiplie par une fonction fenêtre d'observation (également appelée fenêtre de pondération ou d'apodisation).
Filtre à réponse impulsionnelle finieEn traitement du signal, un filtre à réponse impulsionnelle finie ou filtre RIF (en anglais Finite Impulse Response filter ou FIR filter) est un filtre dont la réponse impulsionnelle est de durée finie. On parle le plus souvent de filtre RIF pour des filtres à temps discret. Un filtre numérique RIF est caractérisé par une réponse uniquement basée sur un nombre fini de valeurs du signal d'entrée. Par conséquent, quel que soit le filtre, sa réponse impulsionnelle sera stable et de durée finie, dépendante du nombre de coefficients du filtre.
Produit de convolutionEn mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.