Introduit le contrôle prédictif (DEEPC) activé par les données comme méthode de conception des contrôleurs directement à partir des données d'entrée/sortie mesurées, réduisant ainsi le coût de conception et de mise en service.
Explore la robotique autonome, couvrant la cinématique, le contrôle, le contrôle de position, la modélisation, la linéarisation et la compensation de l'avance.
Couvre le modèle de contrôle prédictif pour les diagrammes fondamentaux macroscopiques multi-régions dans la modélisation du flux de trafic et son application dans la gestion des problèmes de contrôle non linéaire.
Explore la théorie du contrôle quadratique optimal linéaire, couvrant les problèmes FH-LQ et IH-LQ et l'importance de l'observabilité dans les systèmes de contrôle.