Variété (géométrie)En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Fonction de plusieurs variablesEn mathématiques et plus spécialement en analyse vectorielle, une fonction numérique à plusieurs variables réelles est une fonction dont l'ensemble de départ E est une partie du produit cartésien . L'ensemble d'arrivée F peut être ou . Le second cas peut se ramener au premier cas en considérant qu'il s'agit en réalité de p fonctions de dans appelées fonctions coordonnées. La fonction est donc une relation associant à chaque n-uplet x = (x, x, ...
Multivariable calculusMultivariable calculus (also known as multivariate calculus) is the extension of calculus in one variable to calculus with functions of several variables: the differentiation and integration of functions involving multiple variables (multivariate), rather than just one. Multivariable calculus may be thought of as an elementary part of advanced calculus. For advanced calculus, see calculus on Euclidean space. The special case of calculus in three dimensional space is often called vector calculus.
Point critique (mathématiques)En analyse à plusieurs variables, un point critique d'une fonction de plusieurs variables, à valeurs numériques, est un point d'annulation de son gradient, c'est-à-dire un point tel que . La valeur prise par la fonction en un point critique s'appelle alors une valeur critique. Les valeurs qui ne sont pas critiques sont appelées valeurs régulières. Les points critiques servent d'intermédiaire pour la recherche des extrémums d'une telle fonction.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.
Ligne de niveauSoit f une fonction à valeurs réelles, une ligne de niveau est un ensemble { (x1,...,xn) | f(x1,...,xn) = c } ; c étant une constante. C'est en fait le sous-ensemble de l'ensemble de définition sur lequel f prend une valeur donnée. Théorème : le gradient de f est perpendiculaire en tout point à la ligne de niveau de f en ce point. Il s'agit d'un résultat important. Pour mieux le comprendre, imaginons que deux randonneurs sont à la même position sur une montagne.