Concepts associés (61)
Espace de Hilbert
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Fonction de base
En analyse numérique, une fonction de base (ou basis function en anglais) est une fonction apparaissant dans une « base » fixée d'un espace fonctionnel. Selon le contexte, une base peut désigner : une base d'un espace vectoriel : la suite (X) est une base de l'espace R[X] des polynômes à coefficients réels, et les monômes X en sont les fonctions de base. une base de Hilbert d'un espace de Hilbert : dans la théorie de Fourier discrète, les fonctions trigonométriques x ↦ cos(nx) et x ↦ sin(nx) sont les fonctions de base d'une base Hilbert de L(R/Z, R).
Signal en dents de scie
thumb|Signal en dents de scie thumb|Les cinq premières sommes partielles de sa série de Fourier thumb|Synthèse additive d'une onde en dents de scie Un signal en dents de scie est une sorte d'onde non-sinusoïdale que l'on rencontre en électronique, ou dans le domaine du traitement du signal. Il tire son nom de sa représentation graphique qui se rapproche des dents d'une scie. Une onde en dents de scie peut être construite en utilisant la synthèse additive : la série de Fourier converge vers une onde en dents de scie de fréquence f.
Transformation de Fourier
thumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Produit de convolution
En mathématiques, le produit de convolution est un opérateur bilinéaire et un produit commutatif, généralement noté « ∗ », qui, à deux fonctions f et g sur un même domaine infini, fait correspondre une autre fonction « f ∗ g » sur ce domaine, qui en tout point de celui-ci est égale à l'intégrale sur l'entièreté du domaine (ou la somme si celui-ci est discret) d'une des deux fonctions autour de ce point, pondérée par l'autre fonction autour de l'origine — les deux fonctions étant parcourues en sens contraire
Forme d'onde
La forme d'onde d'un signal est la représentation graphique de l'évolution de l'amplitude instantanée d'une onde physique périodique ou aléatoire en fonction du temps. Il peut s'agir d'une onde mécanique ou d'une onde électromagnétique. La représentation d'une forme d'onde utilise le principe des coordonnées cartésiennes, avec le temps en abscisse et l'amplitude en ordonnée. Une forme d'onde peut être observée avec un oscilloscope à bande passante appropriée lorsqu'il s'agit d'un signal électrique direct ou issu de capteurs.
Fourier analysis
In mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Transformation de Fourier rapide
La transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Convergence uniforme
La convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.
Équation des ondes
L' ou est une équation aux dérivées partielles en physique qui régit la propagation d'une onde. C'est une équation vérifiée par de nombreux phénomènes ondulatoires de la vie courante comme le son ou la lumière. avec : l'opérateur laplacien ; l'onde vectorielle; une constante, vitesse de propagation de dans le milieu considéré ; L'utilisation du laplacien permet de s'affranchir du choix d'un système de coordonnées. avec : l'opérateur de dérivée partielle seconde en appliqué sur ; , les trois variables cartésiennes de l'espace, et celle du temps.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.