Loi de réciprocité d'ArtinEn mathématiques, la 'loi de réciprocité d'Artin' est un résultat important de théorie des nombres établi par Emil Artin dans une série d'articles publiés entre 1924 et 1930. Au cœur de la théorie du corps de classe, la réciprocité d'Artin tire son nom d'une parenté avec la réciprocité quadratique introduite par Gauss, et d'autres lois d'expression similaire, la réciprocité d'Eisenstein, de Kummer, ou de Hilbert. Une des motivations initiales derrière ce résultat était le neuvième problème de Hilbert, auquel la réciprocité d'Artin apporte une réponse partielle.
Algèbre de quaternionsEn mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K.
Reciprocity lawIn mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relationholds. For a general reciprocity lawpg 3, it is defined as the rule determining which primes the polynomial splits into linear factors, denoted .
Groupe de BrauerEn mathématiques, le groupe de Brauer, nommé d'après Richard Brauer, constitue l'espace classifiant des algèbres centrales simples sur un corps commutatif k donné, pour une certaine relation d'équivalence. On munit cet espace d'une structure de groupe abélien en l'identifiant à un espace de cohomologie galoisienne. Une algèbre centrale simple sur un corps commutatif k, est une algèbre associative de dimension finie A, qui n'admet aucun idéal bilatère non trivial (simplicité), et dont le centre est k (centralité).
K-théorie algébriqueEn mathématiques, la K-théorie algébrique est une branche importante de l'algèbre homologique. Son objet est de définir et d'appliquer une suite de foncteurs K de la catégorie des anneaux dans celle des groupes abéliens. Pour des raisons historiques, K et K sont conçus en des termes un peu différents des K pour n ≥ 2. Ces deux K-groupes sont en effet plus accessibles et ont plus d'applications que ceux d'indices supérieurs. La théorie de ces derniers est bien plus profonde et ils sont beaucoup plus difficiles à calculer, ne serait-ce que pour l'anneau des entiers.