Explore l'apprentissage profond pour les véhicules autonomes, couvrant la perception, l'action et les prévisions sociales dans le contexte des technologies de capteurs et des considérations éthiques.
Explore les modèles prédictifs et les traceurs pour les véhicules autonomes, couvrant la détection d'objets, les défis de suivi, le suivi en réseau neuronal et la localisation des piétons en 3D.
Couvre le concept de descente de gradient dans les cas scalaires, en se concentrant sur la recherche du minimum d'une fonction en se déplaçant itérativement dans la direction du gradient négatif.
Couvre l'algorithme de descente en gradient, visant à minimiser une fonction en se déplaçant itérativement dans la direction de la diminution la plus raide.
Couvre les bases de l'apprentissage profond, y compris les représentations de données, le sac de mots, le prétraitement des données, les réseaux de neurones artificiels et les réseaux de neurones convolutifs.
Couvre la descente du gradient stochastique, la régression linéaire, la régularisation, l'apprentissage supervisé et la nature itérative de la descente du gradient.
Explore les méthodes de gradient adaptatif comme AdaGrad, AcceleGrad et UniXGrad, en se concentrant sur leurs taux d'adaptation et de convergence locaux.