CompteLe mot compte peut référer au verbe compter, au sens de dénombrer. Un compte peut aussi référer à des unités de valeur, et à des listes utilisées par exemple par des entreprises, comme les banques et instituts financiers. Le verbe compter et le substantif compte, autrefois comput dans sa forme savante ou mathématique, proviennent respectivement de l'évolution du verbe latin computāre, signifiant "égaliser des sommes d'argent, des montants de même valeur pour assurer une transaction équilibrée...
Théorème de Cantorvignette|Georg Cantor Le théorème de Cantor est un théorème mathématique, dans le domaine de la théorie des ensembles. Il énonce que le cardinal d'un ensemble E est toujours strictement inférieur au cardinal de l'ensemble de ses parties P(E), c'est-à-dire essentiellement qu'il n'existe pas de bijection entre E et P(E). Combiné avec l'axiome de l'ensemble des parties et l'axiome de l'infini de la théorie des ensembles usuelle, ce théorème implique qu'il existe une hiérarchie infinie d'ensembles infinis en termes de cardinalité.
Cantor's first set theory articleCantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument.
Index setIn mathematics, an index set is a set whose members label (or index) members of another set. For instance, if the elements of a set A may be indexed or labeled by means of the elements of a set J, then J is an index set. The indexing consists of a surjective function from J onto A, and the indexed collection is typically called an indexed family, often written as {Aj}j∈J. An enumeration of a set S gives an index set , where f : J → S is the particular enumeration of S.
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
Type d'ordreEn mathématiques, en particulier dans la théorie des ensembles, deux ensembles ordonnés X et Y sont dits avoir le même type d'ordre s'ils sont isomorphes pour l'ordre, c'est-à-dire, s'il existe une bijection f: X → Y telle que f et son inverse soient strictement croissantes (c'est-à-dire préservent l'ordre). Dans le cas particulier où X est totalement ordonnée, la monotonie de f implique la monotonie de son inverse. Par exemple, l'ensemble des entiers et l'ensemble des nombres entiers pairs ont le même type d'ordre, parce que la correspondance et sa réciproque préservent toutes deux l'ordre.
Fonction de couplageEn mathématiques, une fonction de couplage, est une méthode permettant d’attribuer de manière unique un entier naturel à un couple d'entiers naturels. En théorie des ensembles, on peut utiliser n'importe quelle fonction de couplage pour prouver que l'ensemble des entiers relatifs et celui des nombres rationnels ont la même cardinalité que l'ensemble des entiers naturels. En théorie de la calculabilité, la fonction de couplage de Cantor est utilisée pour coder k-uplets, ainsi une fonction de Nk → N peut être représentée par une fonction de N → N.
Dedekind-infinite setIn mathematics, a set A is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset B of A is equinumerous to A. Explicitly, this means that there exists a bijective function from A onto some proper subset B of A. A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.
EnumerationAn enumeration is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite, or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem. Some sets can be enumerated by means of a natural ordering (such as 1, 2, 3, 4, ...