Résumé
En chimie physique, la loi de la cryométrie permet de quantifier l'abaissement de la température de fusion d'un solvant en fonction de la quantité de soluté ajouté. Elle est, avec la loi de la tonométrie et la loi de l'ébulliométrie, l'une des trois lois énoncées à partir de 1878 par François-Marie Raoult concernant les propriétés colligatives d'une solution chimique liquide. Avec la loi de l'osmométrie, énoncée par Jacobus Henricus van 't Hoff en 1896 et concernant le phénomène de l'osmose, ces lois ont notamment permis d'établir des méthodes de détermination expérimentale de la masse molaire des espèces chimiques. Remarques Lorsque l'on parle des lois de Raoult (au pluriel), on fait généralement allusion aux trois lois évoquées ci-dessus qu'il ne faut pas confondre avec la loi de Raoult (au singulier) concernant les équilibres liquide-vapeur idéaux. Dans le monde anglo-saxon, cette loi est appelée loi de Blagden, du nom du chimiste Charles Blagden, assistant de Henry Cavendish, qui l'a mise en évidence expérimentalement dès 1788 sur des solutions aqueuses. Raoult généralisa cette loi, notamment en étudiant des solutions organiques. Lorsque l'on considère un solvant contenant un soluté , la température de solidification du solvant avec le soluté est plus basse que la température de solidification du solvant seul. La loi de la cryométrie s'énonce ainsi : L'abaissement de la température de solidification est proportionnel à la fraction molaire du soluté. Soit (en remarquant que pour un corps pur la température de solidification - ou température de congélation - est égale à la température de fusion) : avec : l'abaissement de la température de fusion du solvant (en K) ; la constante cryoscopique du solvant (en K) ; la fraction molaire du soluté (en mol/mol). La constante cryoscopique ne dépend que des propriétés du solvant : Constante cryoscopique : avec : la constante universelle des gaz parfaits (en J/(K·mol)) ; la température de fusion du solvant pur (en K) ; l'enthalpie de fusion du solvant pur à (en J/mol).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.