Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Composé polyédriqueUn composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
ZonoèdreUn zonoèdre est un polyèdre convexe où chaque face est un polygone ayant un centre de symétrie. Tout zonoèdre peut être décrit de manière équivalente comme la somme de Minkowski d'un ensemble de segments de droite dans un espace tridimensionnel, ou comme la projection tridimensionnelle d'un hypercube. Les zonoèdres ont été définis à l'origine et étudiés par Evgraf Fedorov, un cristallographe russe. La motivation originale pour l'étude des zonoèdres réside dans le fait que le diagramme de Voronoï d'un réseau quelconque forme un dans lequel les cellules sont des zonoèdres.
Habitus (minéralogie)vignette|Cristaux d'aragonite sur le plafond de la grotte Ravenska jama en Slovénie. En minéralogie, l'habitus est la morphologie caractéristique d'un cristal, c'est-à-dire le mode d'association le plus fréquent de ses formes cristallines. Par exemple, le diamant et la pyrite cristallisent tous deux dans le système cubique. Cependant, le diamant se présente habituellement sous la forme (habitus) d'octaèdres brillants, alors que la pyrite forme généralement des cubes aux faces striées, moins souvent des octaèdres.
Configuration de sommetEn géométrie, une configuration de sommet est une notation abrégée pour représenter la figure de sommet d'un polyèdre ou d'un pavage comme la séquence de faces autour d'un sommet. Pour les polyèdres uniformes, il n'y a qu'un seul type de sommet et, par conséquent, la configuration des sommets définit entièrement le polyèdre. (Les polyèdres chiraux existent dans des paires d'images miroir avec la même configuration de sommet). Une configuration de sommet est donnée sous la forme d'une suite de nombres représentant le nombre de côtés des faces faisant le tour du sommet.
Trapézoèdre trigonalLe trapézoèdre trigonal ou deltoèdre est le premier dans une série infinie de polyèdres à faces uniformes qui sont les polyèdres duaux des antiprismes. Il possède six faces qui sont des losanges congrus. Il est le résultat de la déformation du cube dans la direction d'une grande diagonale. Ce polyèdre est un cas particulier de rhomboèdre. Le cube est un cas particulier avec des faces carrées. image:Rhombohedral.svg|Le trapézoèdre trigonal image:rhomboèdre.
Triacontaèdre rhombiqueEn géométrie, le triacontaèdre rhombique est un polyèdre convexe avec 30 faces identiques en forme de losange (rhombe). Solide de Catalan, il est le dual de l'icosidodécaèdre (solide d'Archimède), zonoèdre, il est également un des neuf polyèdres convexes isotoxaux, les autres étant les cinq solides de Platon, le cuboctaèdre, l'icosidodécaèdre, et le dodécaèdre rhombique. Le rapport de la grande diagonale sur la petite diagonale de chaque face est exactement égal au nombre d'or, φ, c’est-à-dire que les angles aigus sur chaque face mesurent 2 tan(1/φ) = tan(2), ou approximativement 63,43°.
Solide de Catalanthumb|Un dodécaèdre rhombique En mathématiques, un solide de Catalan ou dual archimédien, est un polyèdre dual d'un solide d'Archimède. Les solides de Catalan ont été nommés ainsi en l'honneur du mathématicien belge Eugène Catalan qui, en 1865, fut le premier à les étudier de manière systématique et les décrire et représenter avec soin et minutie. Les solides de Catalan sont tous convexes. Ils sont de faces uniformes mais non de sommets uniformes, en raison du fait que les duaux archimédiens sont de sommets uniformes et non de faces uniformes.
DodécaèdreEn géométrie, un dodécaèdre est un polyèdre à douze faces. Puisque chaque face a au moins trois côtés et que chaque arête borde deux faces, un dodécaèdre a au moins 18 arêtes. Certains ont des propriétés particulières comme des faces régulières ou des symétries : le dodécaèdre régulier, seul solide de Platon à faces pentagonales régulières ; le grand dodécaèdre, le petit dodécaèdre étoilé et le grand dodécaèdre étoilé, trois solides de Kepler-Poinsot ; le dodécaèdre rhombique (de première espèce) et le dodécaèdre rhombique de seconde espèce (ou dodécaèdre de Bilinski) dont les faces, toutes identiques, sont des losanges (rhombes).
Pavage de l'espaceUn pavage de l'espace est un ensemble de portions de l'espace euclidien de , par exemple des polyèdres, dont l'union est l'espace tout entier, sans interpénétration. Dans cet emploi le terme pavage est une généralisation à trois dimensions du concept de pavage du plan, lequel dérive directement du sens commun de , le recouvrement d'un sol par des pavés jointifs (des blocs de forme grossièrement cubique) : la surface d'un sol pavé se présente comme un assemblage de carrés jointifs.