Couvre l'application des équations de Cauchy et de la décomposition intégrale, en abordant les questions liées aux fonctions holomorphes et aux matrices jacobines.
Explore les intégrales de la courbe des champs vectoriels, en mettant l'accent sur les considérations d'énergie pour le mouvement contre ou avec le vent, et introduit des vecteurs tangents et normaux unitaires.
Explore l'intégration curviligne dans le plan complexe, y compris les courbes régulières, les propriétés, les exemples, les antidérivés, le théorème de Cauchy et les critères d'intégrabilité.
Couvre la théorie de Liouville imaginaire compactifiée et les limites déchelle des modèles de boucle, abordant les défis mathématiques et les orientations de recherche futures.