Coordonnées orthogonalesEn mathématiques, les coordonnées orthogonales sont définies comme un ensemble de d coordonnées q = (q1, q2..., qd) dans lequel toutes les surfaces coordonnées se rencontrent à angle droit. Une surface coordonnée particulière de coordonnée qk est une courbe, une surface ou une hypersurface sur laquelle chaque qk est une constante. Par exemple, le système de coordonnées cartésiennes de dimension 3 (x, y, z) est un système de coordonnées orthogonales puisque ses surfaces coordonnées x = constante, y = constante et z = constante sont des plans deux à deux perpendiculaires.
Del in cylindrical and spherical coordinatesThis is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
Volume integralIn mathematics (particularly multivariable calculus), a volume integral (∫∫∫) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function.
Flow velocityIn continuum mechanics the flow velocity in fluid dynamics, also macroscopic velocity in statistical mechanics, or drift velocity in electromagnetism, is a vector field used to mathematically describe the motion of a continuum. The length of the flow velocity vector is the flow speed and is a scalar. It is also called velocity field; when evaluated along a line, it is called a velocity profile (as in, e.g., law of the wall).
Vector operatorA vector operator is a differential operator used in vector calculus. Vector operators include the gradient, divergence, and curl: Gradient is a vector operator that operates on a scalar field, producing a vector field. Divergence is a vector operator that operates on a vector field, producing a scalar field. Curl is a vector operator that operates on a vector field, producing a vector field. Defined in terms of del: The Laplacian operates on a scalar field, producing a scalar field: Vector operators must always come right before the scalar field or vector field on which they operate, in order to produce a result.
Surface (physique)En physique, une surface est une étendue géométrique à deux dimensions, sur laquelle il est localement possible de se repérer à l'aide de deux coordonnées réelles, comme dans le plan (avec l'abscisse et l'ordonnée) ou sur une sphère (avec la latitude et la longitude). Une surface apparaît généralement comme une interface entre deux milieux, ou entre l'intérieur et l'extérieur d'un système physique, supportant une distribution surfacique d'un champ scalaire, ou à travers laquelle passe un flux d'un champ vectoriel.
Circulation (physics)In physics, circulation is the line integral of a vector field around a closed curve. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field. Circulation was first used independently by Frederick Lanchester, Martin Kutta and Nikolay Zhukovsky. It is usually denoted Γ (Greek uppercase gamma). If V is a vector field and dl is a vector representing the differential length of a small element of a defined curve, the contribution of that differential length to circulation is dΓ: Here, θ is the angle between the vectors V and dl.
Identités vectoriellesDans cet article, on note pour le produit vectoriel et · pour le produit scalaire. Les identités suivantes peuvent être utiles en analyse vectorielle. (Identité de Binet-Cauchy) Dans cette section, a, b, c et d représentent des vecteurs quelconques de . Dans cet article, les conventions suivantes sont utilisées; à noter que la position (levée ou abaissée) des indices n'a pas, ici, beaucoup d'importance étant donné que l'on travaille dans un contexte euclidien.
Skew coordinatesA system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, in contrast to orthogonal coordinates. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor calculus. The nonzero off-diagonal components of the metric tensor are a direct result of the non-orthogonality of the basis vectors of the coordinates, since by definition: where is the metric tensor and the (covariant) basis vectors.
Nabla symbol∇ The nabla symbol The nabla is a triangular symbol resembling an inverted Greek delta: or ∇. The name comes, by reason of the symbol's shape, from the Hellenistic Greek word νάβλα for a Phoenician harp, and was suggested by the encyclopedist William Robertson Smith to Peter Guthrie Tait in correspondence. The nabla symbol is available in standard HTML as ∇ and in LaTeX as \nabla. In Unicode, it is the character at code point U+2207, or 8711 in decimal notation, in the Mathematical Operators block.