Concept

Del in cylindrical and spherical coordinates

This is a list of some vector calculus formulae for working with common curvilinear coordinate systems. This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): The polar angle is denoted by : it is the angle between the z-axis and the radial vector connecting the origin to the point in question. The azimuthal angle is denoted by : it is the angle between the x-axis and the projection of the radial vector onto the xy-plane. The function atan2(y, x) can be used instead of the mathematical function arctan(y/x) owing to its domain and . The classical arctan function has an image of (−π/2, +π/2), whereas atan2 is defined to have an image of (−π, π]. CAUTION: the operation must be interpreted as the two-argument inverse tangent, atan2. This page uses for the polar angle and for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses for the azimuthal angle and for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch and in the formulae shown in the table above. (Lagrange's formula for del) The expressions for and are found in the same way. The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector to change in direction. Therefore, where s is the arc length parameter. For two sets of coordinate systems and , according to chain rule, Now, we isolate the th component. For , let .

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
PHYS-101(a): General physics : mechanics
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
Afficher plus
Séances de cours associées (172)
Coordonnées polaires : Position et vélocité
Explore les coordonnées polaires, la position, la vitesse et les vecteurs d'accélération dans les systèmes cartésiens et polaires, y compris les coordonnées cylindriques et sphériques.
Systèmes de coordonnées: polaire, cylindrique, sphérique
Couvre la position, la vitesse et l'accélération dans les systèmes de coordonnées polaires, cylindriques et sphériques.
Physique générale: Mécanique
Couvre les concepts de mécanique dans différents systèmes de coordonnées, expliquant la position, la vitesse et les vecteurs d'accélération.
Afficher plus
Publications associées (35)

High-order accurate entropy stable adaptive moving mesh finite difference schemes for special relativistic (magneto)hydrodynamics

Junming Duan

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which is the high-order accurate ...
ACADEMIC PRESS INC ELSEVIER SCIENCE2022

Local invertibility and sensitivity of atomic structure-feature mappings

Michele Ceriotti, Sergey Pozdnyakov

Background: The increasingly common applications of machine-learning schemes to atomic-scale simulations have triggered efforts to better understand the mathematical properties of the mapping between the Cartesian coordinates of the atoms and the variety o ...
2021

Method and system for generating a three-dimensional model based on spherical photogrammetry

Frédéric Kaplan, Pierre-André Mudry, Nils Hamel, Albane Bénédicte Descombes

A computer-implemented method is proposed for creating a three-dimensional model of the environment. The method comprises the steps of planning (105) a trajectory for a moving system carrying an omnidirectional camera comprising a first image sensor facing ...
2021
Afficher plus
Concepts associés (12)
Coordonnées cylindriques
Un système de est un système de coordonnées curvilignes orthogonales qui généralise à l'espace celui des coordonnées polaires du plan en y ajoutant une troisième coordonnée, généralement notée z, qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires (de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions). Les coordonnées cylindriques servent à indiquer la position d'un point dans l'espace. Les coordonnées cylindriques ne servent pas pour les vecteurs.
Système de coordonnées curvilignes
Un système de coordonnées curvilignes est une façon d'attribuer à chaque point du plan ou de l'espace un ensemble de nombres. Soit un point de l'espace dont les coordonnées sont notées . Un système de coordonnées quelconques est obtenu en se donnant trois fonctions arbitraires des paramètres , telles que ; ces fonctions sont choisies le plus souvent continues, et même différentiables. Les points correspondant à deux des trois coordonnées constantes décrivent une ligne de coordonnées.
Coordonnées orthogonales
En mathématiques, les coordonnées orthogonales sont définies comme un ensemble de d coordonnées q = (q1, q2..., qd) dans lequel toutes les surfaces coordonnées se rencontrent à angle droit. Une surface coordonnée particulière de coordonnée qk est une courbe, une surface ou une hypersurface sur laquelle chaque qk est une constante. Par exemple, le système de coordonnées cartésiennes de dimension 3 (x, y, z) est un système de coordonnées orthogonales puisque ses surfaces coordonnées x = constante, y = constante et z = constante sont des plans deux à deux perpendiculaires.
Afficher plus
MOOCs associés (6)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.