J. H. C. WhiteheadJohn Henry Constantine Whitehead, né le à Madras en Inde et mort le à Princeton dans le New Jersey, connu sous le prénom d'Henry, est un mathématicien britannique qui fut un des fondateurs de la théorie de l'homotopie. C'est le neveu d'Alfred North Whitehead. Il a grandi à Oxford, fait ses études au Eton College et au Balliol College de l'université d'Oxford, en mathématiques. Après une année de travail comme courtier, il commence en 1929 à Princeton une thèse sur la géométrie différentielle sous la direction d'Oswald Veblen.
Complexe simplicialthumb|Exemple d'un complexe simplicial.En mathématiques, un complexe simplicial est un objet géométrique déterminé par une donnée combinatoire et permettant de décrire certains espaces topologiques en généralisant la notion de triangulation d'une surface. Un tel objet se présente comme un graphe avec des sommets reliés par des arêtes, sur lesquelles peuvent se rattacher des faces triangulaires, elles-mêmes bordant éventuellement des faces de dimension supérieure, etc.
CW-complexeEn topologie algébrique, un CW-complexe est un type d'espace topologique, défini par J. H. C. Whitehead pour répondre aux besoins de la théorie de l'homotopie. L'idée était de travailler sur une classe d'objets plus grande que celle des complexes simpliciaux et possédant de meilleures propriétés du point de vue de la théorie des catégories, mais présentant comme eux des propriétés combinatoires se prêtant aux calculs. Le nom CW provient du qualificatif de l'espace topologique, en anglais : closure-finite weak topology, pour « à fermeture finie » et « topologie faible ».
Dual (category theory)In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Groupe d'homotopieEn mathématiques, et plus particulièrement en topologie algébrique, les groupes d'homotopie sont des invariants qui généralisent la notion de groupe fondamental aux dimensions supérieures. Il y a plusieurs définitions équivalentes possibles. Première définition Soit X un espace topologique et un point de X. Soit la boule unité de dimension i de l'espace euclidien . Son bord est la sphère unité de dimension . Le i-ième groupe d'homotopie supérieur est l'ensemble des classes d'homotopie relative à d'applications continues telle que : .
Ensemble simplicialEn mathématiques, un ensemble simplicial X est un objet de nature combinatoire intervenant en topologie. Il est la donnée : d'une famille (X) d'ensembles, indexée par les entiers naturels, les éléments de X étant pensés comme des simplexes de dimension n et pour toute application croissanted'une application le tout tel que Autrement dit : X est un foncteur contravariant, de la catégorie simpliciale Δ dans la catégorie Set des ensembles, ou encore un foncteur covariant de la catégorie opposée Δ dans Set.
Théorie de l'obstructionEn mathématiques, la théorie de l'obstruction est le nom donné en fait à plusieurs théories topologiques distinctes dont le but est de déterminer des invariants cohomologiques. Le sens le plus ancien donné à l'expression « théorie de l'obstruction » est, en topologie algébrique, et plus précisément en théorie de l'homotopie, celui d'une procédure, définie par récurrence sur la dimension, permettant de prolonger une application continue définie sur un complexe simplicial, ou sur un CW-complexe.