Concepts associés (22)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Décomposition QR
En algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Complément de Schur
En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
Factorisation de Cholesky
La factorisation de Cholesky, nommée d'après André-Louis Cholesky, consiste, pour une matrice symétrique définie positive , à déterminer une matrice triangulaire inférieure telle que : . La matrice est en quelque sorte une « racine carrée » de . Cette décomposition permet notamment de calculer la matrice inverse , de calculer le déterminant de A (égal au carré du produit des éléments diagonaux de ) ou encore de simuler une loi multinormale. Elle est aussi utilisée en chimie quantique pour accélérer les calculs (voir Décomposition de Cholesky (chimie quantique)).
Matrix decomposition
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Matrice élémentaire
Une matrice est dite élémentaire lorsqu'elle est obtenue en appliquant une seule opération élémentaire sur les lignes de la matrice identité. Les opérations élémentaires sur les lignes d'une matrice sont les suivantes : permuter deux lignes entre elles ; ajouter un multiple d'une ligne à une autre ligne ; multiplier une ligne par un scalaire non nul. Un examen direct des trois types montre que toute matrice élémentaire est inversible et de transposée élémentaire.
Matrice de Toeplitz
En algèbre linéaire, une matrice de Toeplitz (d'après Otto Toeplitz) ou matrice à diagonales constantes est une matrice dont les coefficients sur une diagonale descendant de gauche à droite sont les mêmes. Par exemple, la matrice suivante est une matrice de Toeplitz : Toute matrice A à n lignes et n colonnes de la forme est une matrice de Toeplitz. Si l'élément situé à l’intersection des ligne i et colonne j de A est noté Ai,j, alors on a : En général, une équation matricielle correspond à un système de n équations linéaires à résoudre.
Gaussian elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855).
Laplace expansion
In linear algebra, the Laplace expansion, named after Pierre-Simon Laplace, also called cofactor expansion, is an expression of the determinant of an n × n matrix B as a weighted sum of minors, which are the determinants of some (n − 1) × (n − 1) submatrices of B. Specifically, for every i, where is the entry of the ith row and jth column of B, and is the determinant of the submatrix obtained by removing the ith row and the jth column of B. The term is called the cofactor of in B.
Computational complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.