Explore l'optimisation convexe, en soulignant l'importance de minimiser les fonctions dans un ensemble convexe et l'importance des processus continus dans l'étude des taux de convergence.
Explore les conditions KKT dans l'optimisation convexe, couvrant les cônes doubles, les propriétés, les inégalités généralisées et les conditions d'optimisation.
Explore la dualité conjuguée dans l'optimisation convexe, couvrant les hyperplans faibles et soutenants, les sous-gradients, l'écart de dualité et les conditions de dualité fortes.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Explore l'optimisation convexe, les fonctions convexes et leurs propriétés, y compris la convexité stricte et la convexité forte, ainsi que différents types de fonctions convexes comme les fonctions et les normes affines linéaires.