Ensemble polaireEn analyse fonctionnelle et en analyse convexe, le polaire d'une partie d'un espace localement convexe est un convexe fermé de son dual topologique, contenant l'origine et ayant une « relation de dualité » avec . Bien qu'il soit usuellement défini dans le cadre bien plus général de deux espaces en dualité, nous nous limiterons dans cet article au cas d'un espace euclidien, qui s'identifie à son dual.
Mackey topologyIn functional analysis and related areas of mathematics, the Mackey topology, named after George Mackey, is the finest topology for a topological vector space which still preserves the continuous dual. In other words the Mackey topology does not make linear functions continuous which were discontinuous in the default topology. A topological vector space (TVS) is called a Mackey space if its topology is the same as the Mackey topology.
Continuous linear operatorIn functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous function (topology) and Discontinuous linear map Bounded operator Suppose that is a linear operator between two topological vector spaces (TVSs). The following are equivalent: is continuous.
Cône convexeEn algèbre linéaire, un cône convexe est une partie d'un espace vectoriel sur un corps ordonné qui est stable par combinaisons linéaires à coefficients strictement positifs. droite|vignette|Exemple de cône convexe (en bleu clair). À l'intérieur de celui-ci se trouve le cône convexe rouge clair qui est composé des points avec, et étant les points représentés sur la figure. Les courbes en haut à droite indiquent que les régions se prolongent à l'infini.
Strong dual spaceIn functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise.
Polar topologyIn functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.
Topologie initialeEn mathématiques, plus précisément en topologie, la topologie initiale, sur un ensemble muni d'une famille d'applications à valeurs dans des espaces topologiques, est la topologie la moins fine pour laquelle toutes ces applications sont continues. Deux cas particuliers importants de topologies initiales sont la topologie induite et la topologie produit. La notion duale est celle de topologie finale. Soient X un ensemble et (fi)i∈I une famille d'applications, chacune définie sur X et à valeurs dans un espace topologique Yi.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.
Complete topological vector spaceIn functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by or , which are generalizations of , while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces.
ÉquicontinuitéEn analyse, un ensemble de fonctions définies sur un espace topologique et à valeurs dans un espace uniforme est dit équicontinu en un point de l'espace de départ si ces fonctions non seulement sont toutes continues en ce point, mais le sont d'une façon semblable en un sens explicité plus loin. L'ensemble de fonctions sera dit équicontinu tout court s'il est équicontinu en tout point de l'espace de départ. On parle souvent non d'ensemble, mais de famille de fonctions équicontinues ; ce qui importe cependant reste l'ensemble des fonctions de la famille.