Réduction (complexité)En calculabilité et en théorie de la complexité, une réduction est un algorithme transformant une instance d'un problème algorithmique en une ou plusieurs instances d'un autre problème. S'il existe une telle réduction d'un problème A à un problème B, on dit que le problème A se réduit au problème B. Dans ce cas, le problème B est plus difficile que le problème A, puisque l'on peut résoudre le problème A en appliquant la réduction puis un algorithme pour le problème B. On écrit alors A ≤ B.
Oracle (machine de Turing)vignette|upright=2|Une machine de Turing avec oracle peut faire appel à une boîte noire (oracle). En théorie de la complexité ou de la calculabilité, les machines de Turing avec oracle sont une variante des machines de Turing disposant d'une boîte noire, un oracle, capable de résoudre un problème de décision en une seule opération élémentaire. En particulier, l'oracle peut résoudre en temps constant un problème indécidable comme le problème de l'arrêt.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Arithmétique de PresburgerEn logique mathématique, l'arithmétique de Presburger est la théorie du premier ordre des nombres entiers naturels munis de l'addition. Elle a été introduite en 1929 par Mojżesz Presburger. Il s'agit de l'arithmétique de Peano sans la multiplication, c’est-à-dire avec seulement l'addition, en plus du zéro et de l'opération successeur. Contrairement à l'arithmétique de Peano, l'arithmétique de Presburger est décidable. Cela signifie qu'il existe un algorithme qui détermine si un énoncé du langage de l'arithmétique de Presburger est démontrable à partir des axiomes de l'arithmétique de Presburger.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Problème de l'isomorphisme de graphesvignette|Le problème est de savoir si deux graphes sont les mêmes. En informatique théorique, le problème de l'isomorphisme de graphes est le problème de décision qui consiste, étant donné deux graphes non orientés, à décider s'ils sont isomorphes ou pas, c'est-à-dire s'ils sont les mêmes, quitte à renommer les sommets. Ce problème est particulièrement important en théorie de la complexité, plus particulièrement pour le problème P=NP.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Liste de classes de complexitéThis is a list of complexity classes in computational complexity theory. For other computational and complexity subjects, see list of computability and complexity topics. Many of these classes have a 'co' partner which consists of the complements of all languages in the original class. For example, if a language L is in NP then the complement of L is in co-NP. (This does not mean that the complement of NP is co-NP—there are languages which are known to be in both, and other languages which are known to be in neither.