Zéro absoluLe zéro absolu est la température la plus basse qui puisse exister. Il correspond à la limite basse de l'échelle de température thermodynamique, soit l'état dans lequel l'enthalpie et l'entropie d'un gaz parfait atteint sa valeur minimale, notée 0. Cette température théorique est déterminée en extrapolant la loi des gaz parfaits : selon un accord international, la valeur du zéro absolu est fixée à (Celsius) ou (Fahrenheit). Par définition, les échelles Kelvin et Rankine prennent le zéro absolu comme valeur 0.
Constante universelle des gaz parfaitsLa constante universelle des gaz parfaits (notée , ou ) est le produit du nombre d'Avogadro () et de la constante de Boltzmann (). Ce produit vaut exactement . La constante universelle des gaz parfaits a été empiriquement déterminée en tant que constante de proportionnalité de l'équation des gaz parfaits. Elle établit le lien entre les variables d'état que sont la température, la quantité de matière, la pression et le volume. Elle est également utilisée dans de nombreuses autres applications et formules.
Condensationvignette|« Condensation liquide » (de brume sur un rameau). Cette eau est dite « météoritique » ou hydrométéore La condensation est le phénomène physique de changement d'état de la matière d'un état gazeux à un état condensé (solide ou liquide). Le passage de l'état gazeux à l'état liquide est aussi appelé liquéfaction. La cinétique de ce phénomène est décrite par la relation de Hertz-Knudsen.
Pressure measurementPressure measurement is the measurement of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges, vacuum gauges or compound gauges (vacuum & pressure). The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.
Conditions normales de température et de pressionLes conditions normales de température et de pression (parfois abrégé CNTP) sont des conditions pratiques, en partie arbitraires, d'expérimentation et de mesure en laboratoire en physique et en chimie. Elles permettent des comparaisons commodes entre résultats expérimentaux. Les conditions les plus usuelles fixent la température normale à () et la pression normale à ( = ), soit la pression atmosphérique moyenne au niveau de la mer. D'autres définitions sont toutefois aussi usitées.
Équipartition de l'énergiethumb|266px|Agitation thermique d’un peptide avec une structure en hélice alpha. Les mouvements sont aléatoires et complexes, l’énergie d’un atome peut fluctuer énormément. Néanmoins, le théorème d’équipartition permet de calculer l’énergie cinétique moyenne de chaque atome ainsi que l’énergie potentielle moyenne de nombreux modes de vibration. Les sphères grises, rouges et bleues représentent des atomes de carbone, d’oxygène et d’azote respectivement. Les sphères blanches plus petites représentent des atomes d’hydrogène.
Loi d'AvogadroLa loi d'Avogadro, également appelée hypothèse d'Avogadro, du nom du physicien et chimiste italien Amedeo Avogadro, est l'une des lois de la thermodynamique constituant la loi des gaz parfaits. La loi d'Avogadro, d'Ampère ou d'Avogadro-Ampère, énoncée par Amedeo Avogadro en 1811, et proposée indépendamment par André-Marie Ampère en 1814, spécifie que des volumes égaux de gaz parfaits différents, aux mêmes conditions de température et de pression, contiennent le même nombre de molécules.
Thermodynamic stateIn thermodynamics, a thermodynamic state of a system is its condition at a specific time; that is, fully identified by values of a suitable set of parameters known as state variables, state parameters or thermodynamic variables. Once such a set of values of thermodynamic variables has been specified for a system, the values of all thermodynamic properties of the system are uniquely determined. Usually, by default, a thermodynamic state is taken to be one of thermodynamic equilibrium.
Capacité thermique volumiqueLa capacité thermique volumique d'un matériau, anciennement appelée chaleur volumique, est sa capacité à emmagasiner la chaleur rapportée à son volume. Elle est définie par la chaleur nécessaire pour élever de la température d'un mètre cube de matériau. C'est une grandeur intensive égale à la capacité thermique rapportée au volume du corps étudié. C'est donc le produit de la masse volumique (ρ) d'un matériau et de sa capacité thermique massique (). Elle s'exprime en joules par mètre cube-kelvin (soit ou parfois ).
Loi de CharlesLa loi de Charles, du nom du physicien, chimiste et inventeur français Jacques Charles, est l'une des lois de la thermodynamique constituant la loi des gaz parfaits. thumb|Animation montrant la relation entre température et volume lorsque la pression est maintenue constante.|300px La loi de Charles stipule qu'à pression constante, le volume d'un gaz parfait est directement proportionnel à la température absolue (exprimée en kelvins), soit, pour une même quantité de gaz dans deux états 1 et 2 à la même pression : On peut également écrire : où dépend de .