Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
StéréoscopieLa stéréoscopie (du grec stéréo- : solide, -scope : vision) est l'ensemble des techniques mises en œuvre pour reproduire une perception du relief à partir de deux s planes. La stéréoscopie se base sur le fait que la perception humaine du relief se forme dans le cerveau lorsqu'il reconstitue une seule image à partir de la perception des deux images planes et différentes provenant de chaque œil. Il existe, pour réaliser ces images, aussi bien que pour les observer, une grande variété de moyens, à la description desquels plusieurs centaines de livres ont été consacrés.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Réalité augmentéeLa réalité augmentée est la superposition de la réalité et d'éléments (sons, images 2D, 3D, vidéos) calculés par un système informatique en temps réel. Elle désigne souvent les différentes méthodes qui permettent d'incruster de façon réaliste des objets virtuels dans une séquence d'images. Elle s'applique aussi bien à la perception visuelle (superposition d'images virtuelles aux images réelles) qu'aux perceptions proprioceptives comme les perceptions tactiles ou auditives.
Analyse d'imageL'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Flux optiquevignette|400px|Le flux optique perçu par un observateur en rotation (dans ce cas, une mouche). Les flèches représentent la direction et la vitesse du mouvement. Le flux optique est le mouvement apparent des objets, surfaces et contours d'une scène visuelle, causé par le mouvement relatif entre un observateur (l'œil ou une caméra) et la scène. Le concept de flux optique a été étudié dans les années 1940 et des travaux ont été publiés dans American psychologist par James J. Gibson.
Cartographie et localisation simultanéesvignette|Une carte générée par le robot Darmstadt. La localisation et cartographie simultanées, connue en anglais sous le nom de SLAM (simultaneous localization and mapping) ou CML (concurrent mapping and localization), consiste, pour un robot ou véhicule autonome, à simultanément construire ou améliorer une carte de son environnement et de s’y localiser. La plupart des robots industriels sont fixes et effectuent des tâches dans un environnement connu.
Activity recognitionActivity recognition aims to recognize the actions and goals of one or more agents from a series of observations on the agents' actions and the environmental conditions. Since the 1980s, this research field has captured the attention of several computer science communities due to its strength in providing personalized support for many different applications and its connection to many different fields of study such as medicine, human-computer interaction, or sociology.