Résumé
En mathématiques et en économie, la théorie du transport est le nom donné à l'étude du transfert optimal de matière et à l'allocation optimale de ressources. Le problème a été formalisé par le mathématicien français Gaspard Monge en 1781. D'importants développements ont été réalisés dans ce domaine pendant la Seconde Guerre mondiale par le mathématicien et économiste russe Léonid Kantorovitch. Par conséquent, le problème dans sa forme actuelle est parfois baptisé problème (du transport) de Monge-Kantorovitch. On se donne un ensemble de mines d'où est extrait un minerai de fer, et un ensemble de usines utilisant ce minerai comme matière première. Ces mines et ces usines ont une certaine aire. On suppose donc pour la clarté du propos que ces mines et ces usines constituent deux sous-ensembles disjoints et limités par une courbe fermée et du plan euclidien . On suppose également qu'on dispose d'une fonction, que l'on appelle le coût, à savoir , telle que soit le coût de transport d'un transfert de minerai du site au site . Par souci de simplicité, on ignore le temps mis lors de ce transfert. On considère également que chaque mine ne peut fournir en minerai qu'une seule usine (pas de partage de minerai durant le transfert) et que la quantité transférée doit être intégralement distribuée à une usine donnée pour que celle-ci soit opérationnelle (les usines ne peuvent fonctionner ni en sur-capacité ni en sous-capacité). Ayant fait ces hypothèses, un plan de transport est une bijection — c.-à-d. un arrangement où chaque mine alimente précisément une usine . On désire trouver le plan de transport optimal, le plan dont le coût total est minimal vis-à-vis de tous les plans de transport possibles de vers . L'exemple suivant illustre l'importance de la fonction coût dans la détermination du plan de transport optimal. On suppose qu'on a livres d'égale épaisseur sur une étagère (la droite réelle), arrangés sans espaces entre eux. On désire les réarranger toujours sans espace entre eux, mais selon un décalage égal à l'épaisseur d'un livre sur la droite.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.