Aleph (nombre)vignette|Aleph-zéro, le plus petit aleph En théorie des ensembles, les alephs sont les cardinaux des ensembles infinis bien ordonnés. En quelque sorte, le cardinal d'un ensemble représente sa « taille », indépendamment de toute structure que puisse avoir cet ensemble (celle d'ordre en particulier dans le cas présent). Ils sont nommés ainsi d'après la lettre aleph, notée א, première lettre de l'alphabet hébreu, qui est utilisée pour les représenter.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Puissance du continuEn mathématiques, plus précisément en théorie des ensembles, on dit qu'un ensemble E a la puissance du continu (ou parfois le cardinal du continu) s'il est équipotent à l'ensemble R des nombres réels, c'est-à-dire s'il existe une bijection de E dans R. Le cardinal de R est parfois noté , en référence au , nom donné à l'ensemble ordonné (R, ≤). Cet ordre (et a fortiori le cardinal de l'ensemble sous-jacent) est entièrement déterminé (à isomorphisme près) par quelques propriétés classiques.
Ordinal limiteEn mathématiques et plus précisément en théorie des ensembles, un ordinal limite est un nombre ordinal non nul qui n'est pas un ordinal successeur. D'après la définition ci-dessus, un ordinal α est limite si et seulement s'il satisfait l'une des propositions équivalentes suivantes : α ≠ 0 et ∀ β β+1 ≠ α ; 0 < α et ∀ β < α β+1 < α ; α ≠ 0 et ∀ β < α ∃ γ β < γ < α ; α est non nul et égal à la borne supérieure de tous les ordinaux qui lui sont strictement inférieurs (l'ensemble des ordinaux strictement inférieurs à un ordinal successeur β +1 possède un plus grand élément, l'ordinal β) ; en tant qu'ensemble d'ordinaux, α n'est pas vide et ne possède pas de plus grand élément ; α peut s'écrire sous la forme ω·γ avec γ > 0 ; α est un point d'accumulation de la classe des nombres ordinaux, munie de la topologie de l'ordre.
Cardinal régulierEn théorie des ensembles, un cardinal infini est dit régulier s'il est égal à sa cofinalité. Intuitivement, un cardinal est régulier si toute réunion indexée par un ensemble petit d'ensembles petits est petite, où un ensemble est dit petit s'il est de cardinalité strictement inférieure à . Une autre définition possible équivalente est que est régulier si pour tout cardinal , toute fonction est bornée. Un cardinal qui n'est pas régulier est dit singulier.
Théorème de König (théorie des ensembles)In set theory, König's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and for every i in I, then The sum here is the cardinality of the disjoint union of the sets mi, and the product is the cardinality of the Cartesian product. However, without the use of the axiom of choice, the sum and the product cannot be defined as cardinal numbers, and the meaning of the inequality sign would need to be clarified.
Théorème d'EastonEn théorie des ensembles, le théorème d'Easton est un résultat décrivant les nombres cardinaux possibles pour des ensembles de parties. (améliorant un résultat de Robert Solovay) montra par forcing que les seules contraintes sur les valeurs possibles de 2κ, où κ est un cardinal régulier, sont celles découlant du théorème de Cantor et du théorème de König : , et (où cf(α) est la cofinalité de α).
Cardinal limiteEn mathématiques et en particulier en théorie des ensembles, un cardinal limite est un type particulier de nombre cardinal. Il en existe deux définitions, une "faible" et l'autre "forte", qu'il faut distinguer selon le contexte. Un nombre cardinal est un cardinal faiblement limite si ce n'est ni 0, ni un cardinal successeur. Ceci signifie qu'on ne peut pas "accéder" à par une opération de succession sur les cardinaux, c'est-à-dire que ne s'écrit pas sous la forme .
Ensemble bien ordonnéEn mathématiques, un ensemble ordonné (E, ≤) est bien ordonné et la relation ≤ est un bon ordre si la condition suivante est satisfaite : Toute partie non vide de E possède un plus petit élément. Formellement cela donne ∀X⊆E, X≠∅ ⇒ (∃u∈X, ∀v∈X u≤v). Si (E, ≤) est bien ordonné alors ≤ est nécessairement un ordre total, c'est-à-dire que deux éléments quelconques x et y de E sont toujours comparables. En effet, l'ensemble { x, y } possède un plus petit élément, donc on a x ≤ y ou y ≤ x.
Nombre cardinalvignette|Le nombre cardinal des deux ensembles X et Y est 4 En linguistique, les nombres entiers naturels zéro, un, deux, trois, etc. s’appellent des adjectifs numéraux cardinaux. En théorie des ensembles, le nombre cardinal ou cardinal d'un ensemble E (fini ou infini) est, intuitivement, le « nombre » d'éléments lui appartenant. On peut définir formellement ce « nombre » comme la classe de tous les ensembles équipotents à E (c'est-à-dire en bijection avec E), ou, de manière fort différente, comme le plus petit ordinal équipotent à E.