Upper half-planeIn mathematics, the upper half-plane, is the set of points in the Cartesian plane with The lower half-plane is defined similarly, by requiring that be negative instead. Each is an example of two-dimensional half-space. The affine transformations of the upper half-plane include shifts , , and dilations , . Proposition: Let and be semicircles in the upper half-plane with centers on the boundary. Then there is an affine mapping that takes to . Proof: First shift the center of to . Then take and dilate.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Théorème de modularitéLe théorème de modularité (auparavant appelé conjecture de Taniyama-Weil ou conjecture de Shimura-Taniyama-Weil ou conjecture de Shimura-Taniyama) énonce que, pour toute courbe elliptique sur Q, il existe une forme modulaire de poids 2 pour un Γ(N), ayant même fonction L que la courbe elliptique. Une grande partie de ce résultat, suffisante pour en déduire le dernier théorème de Fermat, a été démontrée par Andrew Wiles. S'inspirant de ses techniques, Christophe Breuil, Brian Conrad, Fred Diamond et Richard Taylor ont traité les cas restants en 1999.
Arithmetic groupIn mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.