Concepts associés (24)
Groupe modulaire
En mathématiques, on appelle groupe modulaire le groupe PSL(2, Z), quotient du groupe spécial linéaire SL(2, Z) par son centre { Id, –Id }. Il s'identifie à l'image de SL(2, Z) dans le groupe de Lie On le note souvent Γ(1) ou simplement Γ. Ce nom provient de l'action à gauche et fidèle de Γ(1) par homographies sur le demi-plan de Poincaré H des nombres complexes de partie imaginaire strictement positive. Cette action n'est que la restriction de l'action de PGL(2, C) sur la droite projective complexe P(C) = C ∪ {∞} : la matrice agit sur P(C) par la transformation de Möbius qui en envoie z sur .
J-invariant
Le j-invariant, parfois appelé fonction j, est une fonction introduite par Felix Klein pour l'étude des courbes elliptiques, qui a depuis trouvé des applications au-delà de la seule géométrie algébrique, par exemple dans l'étude des fonctions modulaires, de la théorie des corps de classes et du monstrous moonshine. On travaille dans le . Soient quatre points distincts , leur birapport est : Cette quantité est invariante par homographies du plan, mais dépend de l'ordre des quatre nombres considérés.
Fuchsian group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of orientation-preserving isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting on any of these spaces.
Moduli stack of elliptic curves
In mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Opérateur de Hecke
En mathématiques, en particulier dans la théorie des formes modulaires, un opérateur de Hecke, étudié par Erich Hecke, est un certain type d'opérateur de « moyennage » qui joue un rôle important dans la structure des espaces vectoriels de formes modulaires et de représentations automorphes plus générales. Mordell (1917) a utilisé les opérateurs de Hecke sur les formes modulaires dans un article sur les formes paraboliques spéciales de Ramanujan, bien avant la théorie générale développée par Hecke (1937a, 1937b).
Quartique de Klein
thumb|La quartique de Klein est le quotient d'un pavage uniforme triangulaire d'ordre 7. En géométrie hyperbolique, la quartique de Klein, du nom du mathématicien allemand Felix Klein, est une surface de Riemann compacte de genre 3. Elle a le groupe d'automorphismes d'ordre le plus élevé possible parmi les surfaces de Riemann de genre 3, à savoir le groupe simple d'ordre 168. La quartique de Klein est en conséquence la de genre le plus bas possible. Surface de Bolza Surface de Macbeath Théorème de Stark-Hee
Congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
Variété de Shimura
En algèbre, les variétés de Shimura sont des analogues de dimension élevée des courbes modulaires. Ils sont formés comme la variété de quotient d'un espace hermitien symétrique par rapport à un sous-groupe de congruence d'un groupe réductif algébrique (défini sur les nombres rationnels). Les variétés de Shimura portent le nom de Gorō Shimura. Notation: est le groupe multiplicatif (un groupe algébrique), c'est-à-dire est le tore de Deligne, c'est-à-dire le tore algébrique sur , que l'on obtient de sur par la restriction de Weil ().
Belyi's theorem
In mathematics, Belyi's theorem on algebraic curves states that any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points only. This is a result of G. V. Belyi from 1979. At the time it was considered surprising, and it spurred Grothendieck to develop his theory of dessins d'enfant, which describes non-singular algebraic curves over the algebraic numbers using combinatorial data.
Monstrous moonshine
En mathématiques, monstrous moonshine est un terme anglais conçu par John Horton Conway et Simon P. Norton en 1979, utilisé pour décrire la connexion, alors totalement inattendue, entre le groupe Monstre M et les formes modulaires (en particulier la fonction j). Précisément, Conway et Norton, suivant une observation initiale de John McKay, trouvèrent que le développement de Fourier de (, où désigne le ) pouvait être exprimé en termes de combinaisons linéaires des dimensions des représentations irréductibles de M () où et Conway et Norton formulèrent des conjectures concernant les fonctions obtenues en remplaçant les traces sur l'élément neutre par les traces sur d'autres éléments g de M.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.