Explore l'inférence statistique, la suffisance et l'exhaustivité, en soulignant l'importance de statistiques suffisantes et le rôle de statistiques complètes dans la réduction des données.
Couvre la théorie de l'échantillonnage, les statistiques et l'inférence, en mettant l'accent sur la distribution de l'échantillonnage des statistiques.
Couvre la méthode ANOVA, en se concentrant sur la partition de la somme totale des carrés en composantes de traitement et d'erreur, les calculs carrés moyens, les statistiques de Fisher et la distribution F.
Explore la suffisance et l'ancilarité de la théorie de l'échantillonnage, soulignant l'importance de statistiques suffisantes pour compresser les données sans perdre d'information.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.