Hyperbole (mathématiques)thumb|Hyperbole obtenue comme intersection d'un cône et d'un plan parallèle à l'axe du cône.Si l'on incline légèrement le plan, l'intersection sera encore une hyperbole tant que l'angle d'inclinaison reste inférieur à l'angle que fait une génératrice avec l'axe du cône. En mathématiques, une hyperbole est une courbe plane obtenue comme la double intersection d'un double cône de révolution avec un plan. Elle peut également être définie comme conique d'excentricité supérieure à 1, ou comme ensemble des points dont la différence des distances à deux points fixes est constante.
Ellipse (mathématiques)Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
Parabolevignette|Une parabole représentée par la fonction f(x)=x. La parabole est une courbe plane, symétrique par rapport à un axe, ayant approximativement la forme d'un U dont les branches s'écarteraient indéfiniment. Cette courbe intervient dans les problèmes les plus élémentaires de mécanique ou de mathématiques. En effet la trajectoire d'un projectile qui n'est soumis qu'à la pesanteur est une parabole, ou encore, en mathématiques, la représentation graphique des polynômes de degré 2 est une parabole.
Tangente (géométrie)Tangente vient du latin tangere, toucher : en géométrie, la tangente à une courbe en un de ses points est une droite qui « touche » la courbe au plus près au voisinage de ce point. La courbe et sa tangente forment alors un angle nul en ce point. La notion de tangente permet d'effectuer des approximations : pour la résolution de certains problèmes qui demandent de connaître le comportement de la courbe au voisinage d'un point, on peut assimiler celle-ci à sa tangente. Ceci explique la parenté entre la notion de tangente et le calcul différentiel.