Courbure principaleEn géométrie différentielle des surfaces, les deux courbures principales d'une surface sont les courbures de cette surface selon deux directions perpendiculaires appelées directions principales. On montre que ce sont les courbures minimale et maximale rencontrées en faisant tourner le plan de coupe. Les courbures principales sont les valeurs propres de l'endomorphisme de Weingarten. Elles caractérisent la géométrie locale des surfaces à l'ordre 2.
Courbure moyenneEn mathématiques, on appelle courbure moyenne d'une surface la moyenne des courbures minimale et maximale. Elle est notée (ou encore Km, ou parfois H). C'est un nombre réel, dont le signe dépend du choix fait pour orienter la surface. S'il est relativement simple de définir le rayon de courbure d'une courbe plane, pour une surface les choses se compliquent. On définit alors un analogue comme suit : en un point, on définit un axe, le vecteur normal à la surface. On imagine ensuite un plan tournant sur cet axe.
Surface régléeEn géométrie, une surface réglée est une surface par chaque point de laquelle passe une droite, appelée génératrice, contenue dans la surface. On peut décrire une surface réglée S en la considérant comme la réunion d'une famille de droites D(u) dépendant d'un paramètre u parcourant une partie I de l'ensemble des réels. Il suffit pour cela de se donner pour chaque u dans I un point P(u) et un vecteur directeur de D(u). On obtient alors une représentation paramétrique de la surface S : L'arc paramétré par est appelé une courbe directrice de S.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Surface minimaleEn mathématiques et en physique, une surface minimale est une surface minimisant son aire tout en réalisant une contrainte : un ensemble de points, ou le bord de la surface, est d'avance déterminé. Si un cerceau est retiré d'une bassine d'eau savonneuse, un disque de liquide reste fixé. Un souffle dessus déforme légèrement le disque en une calotte sphérique. Si l'étude fait appel à la mécanique des fluides, le traitement mathématique utilise le langage des surfaces minimales.
Courbure de Gaussvignette|De gauche à droite : une surface de courbure de Gauss négative (un hyperboloïde), une surface de courbure nulle (un cylindre), et une surface de courbure positive (une sphère). vignette|Certains points du tore sont de courbure positive (points elliptiques) et d'autres de courbure négative (points hyperboliques) La courbure de Gauss, parfois aussi appelée courbure totale, d'une surface paramétrée X en X(P) est le produit des courbures principales. De manière équivalente, la courbure de Gauss est le déterminant de l'endomorphisme de Weingarten.