Explore la géométrie différentielle des surfaces paramétriques, couvrant l'espace tangent, la courbure normale, les courbures principales et les courbes asymptotiques.
Introduit les bases de la géométrie différentielle pour les courbes et les surfaces paramétriques, la courbure de couverture, les vecteurs tangents et l'optimisation des surfaces.
Couvre le cadre pour les plaques, les énergies de flexion et d'étirement, et Föppl-von Kármán Equations, explorant les courbures moyennes et gaussiennes.
Couvre les fondamentaux de la géométrie différentielle des surfaces, y compris l'équilibre des coquilles, des récipients sous pression, et la courbure des surfaces.
Explore la théorie de la contrainte finie et de la rotation dans les tiges de Kirchhoff, couvrant les souches inextensibles, les rotations finies et l'équilibre.