Neighbourhood systemIn topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point in a topological space is the collection of all neighbourhoods of Neighbourhood of a point or set An of a point (or subset) in a topological space is any open subset of that contains A is any subset that contains open neighbourhood of ; explicitly, is a neighbourhood of in if and only if there exists some open subset with . Equivalently, a neighborhood of is any set that contains in its topological interior.
Semi-normeEn mathématiques, une semi-norme est une application d'un espace vectoriel dans l'ensemble des réels positifs. C'est « presque » une norme mais une propriété est manquante : la semi-norme d'un vecteur non nul peut être nulle. En analyse fonctionnelle, cette situation est relativement courante. L'espace vectoriel est un espace de fonctions d'un espace mesuré à valeurs dans les réels ou complexes. La semi-norme correspond par exemple à l'intégrale de la valeur absolue ou du module de la fonction.
Topologie grossièreEn mathématiques et plus précisément en topologie, la topologie grossière (ou topologie triviale) associée à un ensemble X est la topologie sur X dont les seuls ouverts sont l'ensemble vide et X. Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble ; intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.
Espace uniformeEn mathématiques, la notion d'espace uniforme, introduite en 1937 par André Weil, est une généralisation de celle d'espace métrique. Une structure uniforme est une structure qui permet de définir la continuité uniforme. On peut y parvenir de deux manières différentes, l'une en généralisant la notion de distance, l'autre avec une axiomatique proche de celle des espaces topologiques. On montre que ces deux approches sont équivalentes. Un écart sur un ensemble est une application [0, +∞] telle que pour tout : (symétrie); (inégalité triangulaire).
Base (topologie)En mathématiques, une base d'une topologie est un ensemble d'ouverts tel que tout ouvert de la topologie soit une réunion d'éléments de cet ensemble. Ce concept est utile parce que de nombreuses propriétés d'une topologie se ramènent à des énoncés sur une de ses bases et beaucoup de topologies sont faciles à définir par la donnée d'une base. Soit (X, T) un espace topologique. Un réseau de T est un ensemble N de parties de X tel que tout ouvert U de T est une réunion d'éléments de N, autrement dit : pour tout point x de U, il existe dans N une partie incluse dans U et contenant x.
Suite généraliséeEn mathématiques, la notion de suite généralisée, ou suite de Moore-Smith, ou filet, étend celle de suite, en indexant les éléments d'une famille par des éléments d'un ensemble ordonné filtrant qui n'est plus nécessairement celui des entiers naturels. Pour tout ensemble X, une suite généralisée d'éléments de X est une famille d'éléments de X indexée par un ensemble ordonné filtrant A. Par filtrant (à droite), on entend que toute paire dans A possède un majorant dans A. Soit un filet dans un ensemble E et, pour tout , .
Topologie de SierpińskiIn mathematics, the Sierpiński space (or the connected two-point set) is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński. The Sierpiński space has important relations to the theory of computation and semantics, because it is the classifying space for open sets in the Scott topology.
Espace localement convexeEn mathématiques, un espace localement convexe est un espace vectoriel topologique dont la topologie peut être définie à l'aide d'une famille de semi-normes. C'est une généralisation de la notion d'espace normé. Un espace vectoriel topologique E est dit localement convexe s'il vérifie l'une des deux propriétés équivalentes suivantes : il existe une famille de semi-normes telle que la topologie de E est initiale pour l'ensemble d'applications ; le vecteur nul possède une base de voisinages formée de convexes.
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Espace séparéEn mathématiques, un espace séparé, dit aussi espace de Hausdorff, est un espace topologique dans lequel deux points distincts quelconques admettent toujours des voisinages disjoints. Cette condition est aussi appelée axiome T2 au sein des axiomes de séparation. L'appellation fait référence à Felix Hausdorff, mathématicien allemand et l'un des fondateurs de la topologie, qui avait inclus cette condition dans sa définition originale d'espace topologique.