Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'inférence bayésienne pour la précision dans le modèle gaussien avec la moyenne connue, en utilisant un précédent Gamma et en discutant des précédents subjectifs vs objectifs.
Explore des méthodes robustes et résistantes dans des modèles linéaires, en soulignant l'importance de gérer les observations extrêmes et les implications de la robustesse dans les modèles de régression.
Couvre l'estimation spectrale dans l'analyse des séries chronologiques, y compris les noyaux d'imagerie, les méthodes de compression et les modèles AR.
Explore l'estimation du maximum de vraisemblance pour la densité et le modèle Bernoulli, y compris la fiabilité des tests et le dépistage des maladies.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Introduit des techniques pour obtenir des estimations impartiales du risque des prédicteurs appris et leur application pour l'accord hyperparamétrique.