Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Transport parallèlevignette|Transport parallèle d'un vecteur autour d'une boucle fermée (de A à N à B et retour en A) sur une sphère. L'angle par lequel il a tourné est proportionnel à l'aire intérieure à la boucle. En mathématiques, et plus précisément en géométrie différentielle, le transport parallèle est une façon de définir une relation entre les géométries autour de points le long d'une courbe définie sur une surface, ou plus généralement sur une variété.
Théorie de jaugeEn physique théorique, une théorie de jauge est une théorie des champs basée sur un groupe de symétrie locale, appelé groupe de jauge, définissant une « invariance de jauge ». Le prototype le plus simple de théorie de jauge est l'électrodynamique classique de Maxwell. L'expression « invariance de jauge » a été introduite en 1918 par le mathématicien et physicien Hermann Weyl. La première théorie des champs à avoir une symétrie de jauge était la formulation de l'électrodynamisme de Maxwell en 1864 dans .
Exterior covariant derivativeIn the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Let G be a Lie group and P → M be a principal G-bundle on a smooth manifold M. Suppose there is a connection on P; this yields a natural direct sum decomposition of each tangent space into the horizontal and vertical subspaces. Let be the projection to the horizontal subspace.
G-structure on a manifoldIn differential geometry, a G-structure on an n-manifold M, for a given structure group G, is a principal G-subbundle of the tangent frame bundle FM (or GL(M)) of M. The notion of G-structures includes various classical structures that can be defined on manifolds, which in some cases are tensor fields. For example, for the orthogonal group, an O(n)-structure defines a Riemannian metric, and for the special linear group an SL(n,R)-structure is the same as a volume form.
Contorsion tensorThe contorsion tensor in differential geometry is the difference between a connection with and without torsion in it. It commonly appears in the study of spin connections. Thus, for example, a vielbein together with a spin connection, when subject to the condition of vanishing torsion, gives a description of Einstein gravity. For supersymmetry, the same constraint, of vanishing torsion, gives (the field equations of) 11-dimensional supergravity.
Vertical and horizontal bundlesIn mathematics, the vertical bundle and the horizontal bundle are vector bundles associated to a smooth fiber bundle. More precisely, given a smooth fiber bundle , the vertical bundle and horizontal bundle are subbundles of the tangent bundle of whose Whitney sum satisfies . This means that, over each point , the fibers and form complementary subspaces of the tangent space . The vertical bundle consists of all vectors that are tangent to the fibers, while the horizontal bundle requires some choice of complementary subbundle.
TeleparallelismTeleparallelism (also called teleparallel gravity), was an attempt by Albert Einstein to base a unified theory of electromagnetism and gravity on the mathematical structure of distant parallelism, also referred to as absolute or teleparallelism. In this theory, a spacetime is characterized by a curvature-free linear connection in conjunction with a metric tensor field, both defined in terms of a dynamical tetrad field. The crucial new idea, for Einstein, was the introduction of a tetrad field, i.e.
Dérivée covarianteEn géométrie différentielle, la dérivée covariante est un outil destiné à définir la dérivée d'un champ de vecteurs sur une variété. Dans le cas où la dérivée covariante existe, il n'existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont introduites. (Cela est faux quand la dérivée covariante n'existe pas en revanche ).
Dérivée de LieLa dérivée de Lie est une opération de différentiation naturelle sur les champs de tenseurs, en particulier les formes différentielles, généralisant la dérivation directionnelle d'une fonction sur un ouvert de ou plus généralement sur une variété différentielle. On note ici M une variété différentielle de dimension n, ΩM l'espace des formes différentielles sur M et X un champ de vecteurs sur M. On peut définir la dérivée de Lie des formes différentielles sur M essentiellement de deux façons.