Concept

Exterior covariant derivative

In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Let G be a Lie group and P → M be a principal G-bundle on a smooth manifold M. Suppose there is a connection on P; this yields a natural direct sum decomposition of each tangent space into the horizontal and vertical subspaces. Let be the projection to the horizontal subspace. If φ is a k-form on P with values in a vector space V, then its exterior covariant derivative Dφ is a form defined by where vi are tangent vectors to P at u. Suppose that ρ : G → GL(V) is a representation of G on a vector space V. If φ is equivariant in the sense that where , then Dφ is a tensorial (k + 1)-form on P of the type ρ: it is equivariant and horizontal (a form ψ is horizontal if ψ(v0, ..., vk) = ψ(hv0, ..., hvk).) By abuse of notation, the differential of ρ at the identity element may again be denoted by ρ: Let be the connection one-form and the representation of the connection in That is, is a -valued form, vanishing on the horizontal subspace. If φ is a tensorial k-form of type ρ, then where, following the notation in , we wrote Unlike the usual exterior derivative, which squares to 0, the exterior covariant derivative does not. In general, one has, for a tensorial zero-form φ, where F = ρ(Ω) is the representation in of the curvature two-form Ω. The form F is sometimes referred to as the field strength tensor, in analogy to the role it plays in electromagnetism. Note that D2 vanishes for a flat connection (i.e. when Ω = 0). If ρ : G → GL(Rn), then one can write where is the matrix with 1 at the (i, j)-th entry and zero on the other entries. The matrix whose entries are 2-forms on P is called the curvature matrix. Given a smooth real vector bundle E → M with a connection ∇ and rank r, the exterior covariant derivative is a real-linear map on the vector-valued differential forms which are valued in E: The covariant derivative is such a map for k = 0.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.