Concept

Relations entre coefficients et racines

vignette|portrait de François Viète. Un polynôme de degré sur un corps K s'écrit sous sa forme la plus générale : où est appelé coefficient de . Si est scindé, on peut aussi le définir grâce à ses racines, c'est-à-dire l'ensemble des valeurs de qui annulent . Ainsi, le théorème de d'Alembert-Gauss garantit que tout polynôme de degré à coefficients complexes admet exactement racines sur , éventuellement multiples (sur en revanche, ce n'est pas toujours vrai). Il en résulte qu'un polynôme à coefficients complexes peut se réécrire : avec les racines de , éventuellement multiples. Les relations entre les coefficients et les racines portent le nom de François Viète, le premier à les avoir énoncées dans le cas de racines positives. Polynôme symétrique On définit le -ième polynôme symétrique à indéterminées, noté , comme la somme de tous les produits à facteurs de ses indéterminées. (Il y a tels produits possibles.) Par exemple, les polynômes symétriques associés aux indéterminées , , et sont : Plus généralement, en considérant les polynômes symétriques à indéterminées, Soient un polynôme scindé de degré et ses racines (les racines multiples étant comptées plusieurs fois). Alors pour tout , ce qui peut encore s'écrire Ces relations se prouvent en développant le produit , et en identifiant les coefficients du développement (qui s'expriment à partir des polynômes symétriques des racines) avec les coefficients de . Cas . Soient et ses racines. Alors, Cas . Soient et ses racines. Alors, Identités de Newton On se donne le polynôme avec , , ses racines. On veut déterminer la somme . Pour cela, on dispose de l'identité suivante : si bien que, d'après les relations de Viète : Les sommes de Newton sont une généralisation de ce principe. On pose , où les sont les racines de (en particulier, ). La méthode présentée dans l'exemple se généralise, mais les calculs deviennent compliqués. On peut par contre démontrer directement que, pour : En raison de leur expression polynomiale, les coefficients d'un polynôme à coefficients complexes sont des fonctions continues de ses racines.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.