En mathématiques, un polyomino est une réunion connexe de carrés unitaires. Bien que connu depuis au moins un siècle, Solomon W. Golomb est le premier à en avoir fait une étude systématique dans un ouvrage intitulé Polyominoes paru en 1953. Ils sont le sujet de multiples problèmes mathématiques, notamment autour de dénombrement ou de pavage, et ils inspirent différents jeux, notamment Tetris. Un polyomino est construit en plaçant des carrés identiques à des endroits séparés dans le plan, les carrés se touchant au complet par un côté. Selon le contexte, sa définition est plus souple ou plus stricte. Les carrés peuvent seulement se toucher (par exemple, sur une demi-longueur de côté) et les figures ainsi construites s'appellent des polyplets, alors que dans d'autres cas, il y a des trous (en d'autres mots, des régions qui ne sont pas pavées avec des carrés et qui ne touchent pas l'extérieur). Il y a aussi des polyominos en 3D (agrégats de cubes appelés polycubes), en 4D (agrégats d'hypercubes), etc. Les polyominos font partie de la famille des polyformes, qui contient aussi les polyiamondes (faits de triangles équilatéraux) et les polyhex (formés d'hexagones), entre autres. Les polyominos apparaissent régulièrement dans les puzzles depuis la fin du et Solomon W. Golomb est le premier à en avoir fait une étude systématique dans un ouvrage intitulé Polyominoes. Il utilisa le terme pour la première fois lors d'une conférence au Harvard Math Club en 1952. Martin Gardner, dans sa rubrique Mathematical Games, les a vulgarisés en . Aujourd'hui, ils font l'objet d'études mathématiques, tout comme ils ont donné naissance à différents jeux : Tetris et pentamino, entre autres. vignette|Ces tetrominos peuvent être considérés équivalents car ils se retrouvent mutuellement par transformations simples. Dans la suite du texte, nous abrégeons « polyomino à forme libre » par PFL et « polyomino à forme fixée » par PFF. De façon informelle, on peut classer les polyominos en au moins deux groupes. Un polyomino à forme libre peut être retourné.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.