Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les techniques de réduction de la variance dans l'optimisation, en mettant l'accent sur la descente en gradient et les méthodes de descente en gradient stochastique.
Explore la quantification de l'incertitude à l'aide des méthodes de Quasi Monte Carlo et des mesures des écarts pour l'approximation intégrale et l'estimation du volume.
Discute des techniques de réduction de la variance dans la simulation stochastique, en se concentrant sur les stratégies d'allocation et les algorithmes de génération de répliques.
Explore les biais implicites, la descente de gradient, la stabilité dans les algorithmes d'optimisation et les limites de généralisation dans l'apprentissage automatique.
Explore l'optimisation stochastique, les méthodes de gradient adaptatif, les systèmes de recommandation et la factorisation matricielle dans les matrices d'évaluation des éléments utilisateurs.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.