Connexité simpleEn topologie générale et en topologie algébrique, la notion de simple connexité raffine celle de connexe par arcs. Dans un espace connexe par arcs, deux points quelconques peuvent toujours être reliés par un chemin. Dans un espace simplement connexe, cela est toujours possible d'une et une seule façon, l'unicité étant à comprendre au sens de « à déformation (isotopie) près ». Intuitivement, là où un espace connexe est simplement « d'un seul tenant », un espace simplement connexe est de plus sans « trou » ni « poignée ».
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
Augustin Louis CauchyAugustin Louis, baron Cauchy, né à Paris le et mort à Sceaux le , est un mathématicien français, membre de l’Académie des sciences et professeur à l’École polytechnique. Catholique fervent, il est le fondateur de nombreuses œuvres charitables, dont l’Œuvre des Écoles d’Orient. Royaliste légitimiste, il s’exile volontairement lors de l'avènement de Louis-Philippe, après les Trois Glorieuses. Ses positions politiques et religieuses lui valurent nombre d’oppositions.
Fonction entièreEn analyse complexe, une fonction entière est une fonction holomorphe définie sur tout le plan complexe. C'est le cas notamment de la fonction exponentielle complexe, des fonctions polynomiales et de leurs combinaisons par composition, somme et produit, telles que sinus, cosinus et les fonctions hyperboliques. Le quotient de deux fonctions entières est une fonction méromorphe. Considérée comme un cas particulier de la théorie des fonctions analytiques, la théorie élémentaire des fonctions entières ne fait que tirer les conséquences de la théorie générale.
Singularité (mathématiques)En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
Analyse réelleL'analyse réelle est la branche de l'analyse qui étudie les ensembles de réels et les fonctions de variables réelles. Elle étudie des concepts comme les suites et leurs limites, la continuité, la dérivation, l'intégration et les suites de fonctions. La présentation de l'analyse réelle dans les ouvrages avancés commence habituellement avec des démonstrations simples de résultats de la théorie naïve des ensembles, une définition claire de la notion de fonction, une introduction aux entiers naturels et la démonstration importante du raisonnement par récurrence.