Concept

Zero object (algebra)

In algebra, the zero object of a given algebraic structure is, in the sense explained below, the simplest object of such structure. As a set it is a singleton, and as a magma has a trivial structure, which is also an abelian group. The aforementioned abelian group structure is usually identified as addition, and the only element is called zero, so the object itself is typically denoted as {0}. One often refers to the trivial object (of a specified ) since every trivial object is isomorphic to any other (under a unique isomorphism). Instances of the zero object include, but are not limited to the following: As a group, the zero group or trivial group. As a ring, the zero ring or trivial ring. As an algebra over a field or algebra over a ring, the trivial algebra. As a module (over a ring R), the zero module. The term trivial module is also used, although it may be ambiguous, as a trivial G-module is a G-module with a trivial action. As a vector space (over a field R), the zero vector space, zero-dimensional vector space or just zero space. These objects are described jointly not only based on the common singleton and trivial group structure, but also because of shared category-theoretical properties. In the last three cases the scalar multiplication by an element of the base ring (or field) is defined as: κ0 = 0 , where κ ∈ R. The most general of them, the zero module, is a finitely-generated module with an empty generating set. For structures requiring the multiplication structure inside the zero object, such as the trivial ring, there is only one possible, 0 × 0 = 0, because there are no non-zero elements. This structure is associative and commutative. A ring R which has both an additive and multiplicative identity is trivial if and only if 1 = 0, since this equality implies that for all r within R, In this case it is possible to define division by zero, since the single element is its own multiplicative inverse. Some properties of {0} depend on exact definition of the multiplicative identity; see below.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.