Concepts associés (16)
Demi-groupe inversif
En mathématiques, et notamment en algèbre, un demi-groupe inversif est un demi-groupe où tout élément a un inverse unique au sens des demi-groupes : pour tout élément de , il existe un élément unique de tel que et . Les demi-groupes inversifs apparaissent dans un certain nombre de contextes. L'exemple le plus courant est le demi-groupe des bijections partielles d'une ensemble dans lui-même appelé le demi-groupe inversif symétrique ou monoïde inversif symétrique sur cet ensemble.
Allegory (mathematics)
In the mathematical field of , an allegory is a that has some of the structure of the category Rel of sets and binary relations between them. Allegories can be used as an abstraction of categories of relations, and in this sense the theory of allegories is a generalization of relation algebra to relations between different sorts. Allegories are also useful in defining and investigating certain constructions in category theory, such as completions. In this article we adopt the convention that morphisms compose from right to left, so RS means "first do S, then do R".
Relation réflexive
En mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.
Complémentaire (théorie des ensembles)
En mathématiques, et plus particulièrement en théorie des ensembles, le complémentaire d'une partie d'un ensemble est constitué de tous les éléments de n'appartenant pas à . Le complémentaire de est . En cas de risque de confusion, si l'on veut préciser que l'on parle du complémentaire de dans , on note . Si est différent de l'ensemble vide et de , alors et forment une partition de l'ensemble . Lorsque est un ensemble fini, la somme des cardinaux de et est égale au cardinal de : D'où on déduit : Exemple Pour dénombrer les absents dans une assemblée prévue de cinquante personnes, il suffit de compter les présents.
Fermeture transitive
La fermeture transitive est une opération mathématique pouvant être appliquée sur des relations binaires sur un ensemble, autrement dit sur des graphes orientés. La clôture transitive, ou fermeture transitive R d'une relation binaire R sur un ensemble X est la relation ce qui peut également se traduire ainsi : Si on nomme la relation "il existe un chemin de taille n entre a et b" On définit C'est la plus petite relation transitive sur X contenant R.
Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.