Periodic summationIn mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Integral transformIn mathematics, an integral transform maps a function from its original function space into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the inverse transform. An integral transform is any transform of the following form: The input of this transform is a function , and the output is another function .
Matrice circulantevignette|Exemple de matrice circulante avec les éléments représentés par des couleurs En algèbre linéaire, une matrice circulante est une matrice carrée dans laquelle on passe d'une ligne à la suivante par permutation circulaire (décalage vers la droite) des coefficients. Une matrice circulante de taille n est donc de la forme où les coefficients ci sont des complexes. Une matrice circulante constitue un cas particulier de matrice de Toeplitz, de matrice de Frobenius (c'est la matrice générique de la multiplication par un élément de l'algèbre de groupe C[Z/nZ] et aussi un cas particulier de carré latin).
Vanish at infinityIn mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it.
Système invariantUn processus transformant un signal d’entrée en un signal de sortie (signaux électriques par exemple) est appelé système invariant (ou stationnaire) lorsqu’une translation du temps appliquée à l’entrée se retrouve à la sortie. Dans ce sens, la sortie ne dépend pas explicitement du temps. Si au signal d'entrée , un système invariant associe une sortie , alors quel que soit le décalage temporel appliqué à l'entrée, le système associe au signal la sortie décalée .
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Traitement analogique du signalLe traitement analogique du signal est un type de traitement du signal effectué sur des signaux analogiques continus par un processus analogique, par opposition au traitement numérique du signal discret où le traitement du signal est effectué par un processus numérique. Le terme analogique indique qu'on représente mathématiquement le signal comme une série de valeurs continues, contrairement au terme numérique, qui indique plutôt qu'on représente le signal par une série de valeurs discrètes.