Nombres amicauxvignette|220 et 284 sont des nombres amicaux. En arithmétique, deux nombres (entiers strictement positifs) sont dits amicaux ou amiables ou aimables s'ils sont distincts et si chacun des deux nombres est égal à la somme des diviseurs stricts de l'autre. Si l'on note s(n) la somme des diviseurs stricts de n et σ(n) = s(n) + n la somme de tous ses diviseurs, deux nombres distincts m et n sont donc amicaux si et seulement si ou, ce qui est équivalent : Cela implique que si l'un des deux nombres est abondant, alors l'autre est déficient.
Théorème des quatre carrés de LagrangeLe théorème des quatre carrés de Lagrange, également connu sous le nom de conjecture de Bachet, s'énonce de la façon suivante : Tout entier positif peut s'exprimer comme la somme de quatre carrés. Plus formellement, pour tout entier positif n, il existe des entiers a, b, c, d tels que : n = a + b + c + d. Il correspond à une équation diophantienne qui se résout avec les techniques de l'arithmétique modulaire.
Blaise PascalBlaise Pascal, né le à Clermont (devenue Clermont-Ferrand) en Auvergne et mort le à Paris, est un polymathe : mathématicien, physicien, inventeur, philosophe, moraliste et théologien français. Enfant précoce, il est éduqué par son père. Les premiers travaux de Pascal concernent les sciences naturelles et appliquées. Il contribue de manière importante à l’étude des fluides et clarifie les concepts de pression et de vide en étendant le travail de Torricelli. Il est l'auteur de textes importants sur la méthode scientifique.
Plan (mathématiques)En géométrie classique, un plan est une surface plate illimitée, munie de notions d’alignement, d’angle et de distance, et dans laquelle peuvent s’inscrire des points, droites, cercles et autres figures planes usuelles. Il sert ainsi de cadre à la géométrie plane, et en particulier à la trigonométrie lorsqu’il est muni d’une orientation, et permet de représenter l’ensemble des nombres complexes. Un plan peut aussi se concevoir comme partie d’un espace tridimensionnel euclidien, dans lequel il permet de définir les sections planes d’un solide ou d’une autre surface.
François VièteFrançois Viète, ou François Viette, en latin Franciscus Vieta, est un mathématicien français, né à Fontenay-le-Comte (Vendée) en 1540 et mort à Paris le . De famille bourgeoise et de formation juridique, il a été l'avocat de grandes familles protestantes, dont les Parthenay-l'Archevêque et les Rohan, avant de devenir conseiller, puis maître des requêtes au parlement de Rennes, sous , puis maître des requêtes ordinaires de l'hôtel du roi sous .
John WallisJohn Wallis, né le à Ashford, et mort le à Oxford, est un mathématicien anglais. Ses travaux sont précurseurs de ceux de Newton. Il est également précurseur de la phonétique, de l'éducation des sourds et de l'orthophonie. Wallis a fait ses études à Cambridge, à l'Emmanuel College d'abord, puis au Queens' College. Étudiant d'abord la théologie, il est ordonné en 1640. Il se réoriente ensuite vers les mathématiques et montre un grand talent pour la cryptanalyse durant la guerre civile, en décryptant les messages des royalistes.
Petit théorème de FermatEn mathématiques, le petit théorème de Fermat est un résultat de l'arithmétique modulaire, qui peut aussi se démontrer avec les outils de l'arithmétique élémentaire. Il s'énonce comme suit : « si p est un nombre premier et si a est un entier non divisible par p, alors ap–1 – 1 est un multiple de p », autrement dit (sous les mêmes conditions sur a et p), ap–1 est congru à 1 modulo p : Un énoncé équivalent est : « si p est un nombre premier et si a est un entier quelconque, alors ap – a est un multiple de p » : Il doit son nom à Pierre de Fermat, qui l'énonce pour la première fois en .
Apollonios de PergaApollonios de Perga ou Apollonius de Perge (en grec ancien / Apollốnios o Pergaíos), né dans la seconde moitié du (probablement autour de ), disparu au début du est un géomètre et astronome grec. Il serait originaire de Pergé (ou Perga, ou encore Pergè actuelle Aksu en Turquie), mais a vécu à Alexandrie. Il est considéré comme l'une des grandes figures des mathématiques hellénistiques et a exercé une influence importante sur les développements de l'analyse au . Apollonius serait né à Perge autour de 240 .
ExtremumUn extremum (pluriel extrema ou extremums), ou extrémum (pluriel extrémums), est une valeur extrême, soit maximum, soit minimum. Cette notion est particulièrement utilisée en mathématiques, où l'expression maximo-minimum, introduite par Nicolas de Cues, correspond à partir de Fermat et Leibniz aux extrêmes d'une courbe ou d'une fonction, repérés par le fait que les dérivées s'y annulent. Elle est aussi utilisée en physique, où le principe de moindre action est un principe extrémal ainsi que Euler l'a montré.
Point rationnelEn théorie des nombres et géométrie algébrique, les points rationnels d'une variété algébrique définie sur un corps sont, lorsque X est définie par un système d'équations polynomiales, les solutions dans k de ce système. Soit une variété algébrique définie sur un corps . Un point est appelé un point rationnel si le corps résiduel de X en x est égal à . Cela revient à dire que les coordonnées du point dans une carte locale affine appartiennent toutes à .