Algèbre de Boole (logique)Lalgèbre de Boole, ou calcul booléen, est la partie des mathématiques qui s'intéresse à une approche algébrique de la logique, vue en termes de variables, d'opérateurs et de fonctions sur les variables logiques, ce qui permet d'utiliser des techniques algébriques pour traiter les expressions à deux valeurs du calcul des propositions. Elle fut lancée en 1854 par le mathématicien britannique George Boole. L'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Conjonction logiqueEn logique, la conjonction est une opération mise en œuvre par le connecteur binaire et. Le connecteur et est donc un opérateur binaire qui lie deux propositions pour en faire une autre. Si on admet chacune des deux propositions, alors on admettra la proposition qui en est la conjonction. En logique mathématique, le connecteur de conjonction est noté soit &, soit ∧. En théorie de la démonstration, plus particulièrement en calcul des séquents, la conjonction est régie par des règles d'introduction et des règles d'élimination.
Calcul des propositionsLe calcul des propositions ou calcul propositionnel, (ou encore logique des propositions) fait partie de la logique mathématique. Il a pour objet l'étude des relations logiques entre « propositions » et définit les lois formelles selon lesquelles les propositions complexes sont formées en assemblant des propositions simples au moyen des connecteurs logiques et celles-ci sont enchaînées pour produire des raisonnements valides. Il est un des systèmes formels, piliers de la logique mathématique dont il aide à la formulation des concepts.
Connecteur logiqueEn logique, un connecteur logique est un opérateur booléen utilisé dans le calcul des propositions. Comme dans toute approche logique, il faut distinguer un aspect syntaxique et un aspect sémantique. D'un point de vue syntaxique, les connecteurs sont des opérateurs dans un langage formel pour lesquels un certain nombre de règles définissent leur usage, au besoin complétées par une sémantique. Si l'on se place dans la logique classique, l'interprétation des variables se fait dans les booléens ou dans une extension multivalente de ceux-ci.
LogiqueLa logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Table de véritéUne table de vérité (parfois appelée fonction de vérité) est une table mathématique utilisée en logique classique — en particulier le calcul propositionnel classique et l'algèbre de Boole — pour représenter de manière sémantique des expressions logiques et calculer la valeur de leur fonction relativement à chacun de leurs arguments fonctionnels (chaque combinaison de valeur assumée par leurs variables logiques).
Fonction OU exclusifLa fonction OU exclusif, souvent appelée XOR (eXclusive OR) ou disjonction exclusive, ou somme binaire en cryptographie où il est noté +, ou encore ⊻ en algèbre relationnelle, est un opérateur logique de l'algèbre de Boole. À deux opérandes, qui peuvent avoir chacun la valeur VRAI ou FAUX, il associe un résultat qui a lui-même la valeur VRAI seulement si les deux opérandes ont des valeurs distinctes. Cet opérateur est très utilisé en électronique, en informatique, et aussi en cryptographie du fait de ses propriétés intéressantes.
Négation logiqueEn logique et en mathématiques, la négation est un opérateur logique unaire. Il sert à nier une proposition. On note la négation d'une proposition P de diverses manières dont : ¬P (utilisée dans cet article); Non P ; Ces formulations se lisent « négation de P » ou plus simplement « non P ». Dans l'interprétation par des tables de vérité, la proposition ¬P est vraie quand P est fausse et elle est fausse quand P est vraie. La table de vérité s'écrit simplement : ou On remarque alors que où dénote une contradiction.
Valeur de véritéUne valeur de vérité est une valeur attribuée à chaque proposition logique. Pour donner une valeur de vérité à une proposition, on attribue des valeurs de vérité aux variables qu'elle contient. La valeur d'une proposition formés de deux propositions P et Q et d'un connecteur est calculée à partir des valeurs de vérité attribuées à P et à Q. Ainsi la valeur de vérité attribuée à « P et Q » sera « p.q » où « . » est la multiplication. En conséquence, P et Q est vrai si et seulement si P et Q sont chacun vrais.
TautologieLa tautologie (du grec ancien ταὐτολογία, composé de ταὐτό, « la même chose », et λέγω, « dire » : le fait de redire la même chose) est une phrase ou un effet de style ainsi tourné que sa formulation ne puisse être que vraie. La tautologie est apparentée au truisme (ou lapalissade) et au pléonasme. En logique mathématique, le mot « tautologie » désigne une proposition toujours vraie selon les règles du calcul propositionnel. On utilise aussi l'adjectif tautologique en mathématiques pour désigner des structures qui émergent naturellement de la définition de certains objets.