In probability theory, a pairwise independent collection of random variables is a set of random variables any two of which are independent. Any collection of mutually independent random variables is pairwise independent, but some pairwise independent collections are not mutually independent. Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) satisfies or equivalently, their joint density satisfies That is, the joint distribution is equal to the product of the marginal distributions. Unless it is not clear in context, in practice the modifier "mutual" is usually dropped so that independence means mutual independence. A statement such as " X, Y, Z are independent random variables" means that X, Y, Z are mutually independent. Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails. Let the third random variable Z be equal to 1 if exactly one of those coin tosses resulted in "heads", and 0 otherwise (i.e., ). Then jointly the triple (X, Y, Z) has the following probability distribution: Here the marginal probability distributions are identical: and The bivariate distributions also agree: where Since each of the pairwise joint distributions equals the product of their respective marginal distributions, the variables are pairwise independent: X and Y are independent, and X and Z are independent, and Y and Z are independent. However, X, Y, and Z are not mutually independent, since the left side equalling for example 1/4 for (x, y, z) = (0, 0, 0) while the right side equals 1/8 for (x, y, z) = (0, 0, 0). In fact, any of is completely determined by the other two (any of X, Y, Z is the sum (modulo 2) of the others). That is as far from independence as random variables can get.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.