Proof by contradictionIn logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally valid. More broadly, proof by contradiction is any form of argument that establishes a statement by arriving at a contradiction, even when the initial assumption is not the negation of the statement to be proved.
Théorème de Pythagorethumb|right|alt=Triangle rectangle et relation algébrique entre les longueurs de ses côtés.|Relation entre les longueurs des côtés dans un triangle rectangle. Le théorème de Pythagore est un théorème de géométrie euclidienne qui met en relation les longueurs des côtés dans un triangle rectangle. Il s'énonce fréquemment sous la forme suivante : Si un triangle est rectangle, le carré de la longueur de l’hypoténuse (ou côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés.
Conjecture de SyracuseLa conjecture de Syracuse, encore appelée conjecture de Collatz, conjecture d'Ulam, conjecture tchèque ou problème 3x + 1, est l'hypothèse mathématique selon laquelle la suite de Syracuse de n'importe quel entier strictement positif atteint 1. Une suite de Syracuse est une suite d'entiers naturels définie de la manière suivante : on part d'un nombre entier strictement positif ; s’il est pair, on le divise par 2 ; s’il est impair, on le multiplie par 3 et l'on ajoute 1.
Raisonnement par récurrencevignette|Le raisonnement par récurrence est comme une suite de dominos. Si la propriété est vraie au rang n0 (i. e. le premier domino de numéro 0 tombe) et si sa véracité au rang n implique celle au rang n + 1 (i. e. la chute du domino numéro n fait tomber le domino numéro n + 1) alors la propriété est vraie pour tout entier (i. e. tous les dominos tombent). En mathématiques, le raisonnement par récurrence (ou par induction, ou induction complète) est une forme de raisonnement visant à démontrer une propriété portant sur tous les entiers naturels.
CQFD (mathématiques)CQFD, également écrit C. Q. F. D. ou c.q.f.d., est l'abréviation de « ce qu'il fallait démontrer ». Elle se place à la fin d'une démonstration mathématique pour indiquer que le résultat attendu a été démontré. L'expression équivalente en latin est QED, « quod erat demonstrandum », elle-même traduite de l'expression grecque (hóper édei deîxai). vignette|Quod erat demonstrandum, dans un livre de 1604. De nombreux documents utilisent maintenant, plutôt que cette abréviation, des symboles variés pour marquer visuellement la fin d'une démonstration, par exemple le carré blanc : ◻.
ThéorèmeEn mathématiques et en logique, un théorème (du grec théorêma, objet digne d'étude) est une assertion qui est démontrée, c'est-à-dire établie comme vraie à partir d'autres assertions déjà démontrées (théorèmes ou autres formes d'assertions) ou des assertions acceptées comme vraies, appelées axiomes. Un théorème se démontre dans un système déductif et est une conséquence logique d'un système d'axiomes. En ce sens, il se distingue d'une loi scientifique, obtenue par l'expérimentation.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Système axiomatiqueEn mathématiques, un système axiomatique est un ensemble d'axiomes dont certains ou tous les axiomes peuvent être utilisés logiquement pour dériver des théorèmes. Une théorie consiste en un système axiomatique et tous ses théorèmes dérivés. Un système axiomatique complet est un type particulier de système formel. Une théorie formelle signifie généralement un système axiomatique, par exemple formulé dans la théorie des modèles. Une démonstration formelle est une interprétation complète d'une démonstration mathématique dans un système formel.
Cohérence (logique)En logique mathématique, la cohérence, ou consistance, d'une théorie axiomatique peut se définir de deux façons, soit par référence à la déduction : il n'est pas possible de tout démontrer à partir des axiomes de la théorie, soit par référence à la sémantique de la théorie : celle-ci possède des réalisations qui lui donnent un sens. La première définition est syntaxique au sens où elle utilise des déductions ou démonstrations, qui sont des objets finis.
Fondements des mathématiquesLes fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».