AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Éléments (Euclide)Les Éléments (en grec ancien / stoïkheïa) est un traité mathématique et géométrique, constitué de 13 livres organisés thématiquement, probablement écrit par le mathématicien grec Euclide vers Il comprend une collection de définitions, axiomes, théorèmes et leur démonstration sur les sujets de la géométrie euclidienne et de la théorie des nombres primitifs. L'ouvrage est le plus ancien exemple connu d'un traitement axiomatique et systématique de la géométrie et son influence sur le développement de la logique et de la science occidentale est fondamentale.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Théorèmes d'incomplétude de GödelLes théorèmes d'incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, publiés par Kurt Gödel en 1931 dans son article (« Sur les propositions formellement indécidables des Principia Mathematica et des systèmes apparentés »). Ils ont marqué un tournant dans l'histoire de la logique en apportant une réponse négative à la question de la démonstration de la cohérence des mathématiques posée plus de 20 ans auparavant par le programme de Hilbert.
ContradictionEn logique des propositions, une contradiction ou antilogie est une formule qui est toujours fausse, quelle que soit la valeur des variables propositionnelles. On dit aussi que la formule est insatisfaisable, antilogique ou encore contradictoire. L’antilogie, de symbole , s’oppose à la tautologie qui est toujours vraie. La contradiction est une relation existant entre deux ou plusieurs termes ou deux ou plusieurs propositions dont l’un(e) affirme ce que l’autre nie : « A » et « non-A » sont contradictoires, les phrases « Tous les hommes sont barbus » et « Quelques hommes ne sont pas barbus » sont contradictoires.
Racine carrée de deuxLa racine carrée de deux, notée (ou parfois 2), est définie comme le seul nombre réel positif qui, lorsqu’il est multiplié par lui-même, donne le nombre 2, autrement dit × = 2. C’est un nombre irrationnel, dont une valeur approchée à 10 près est : ≈ 1,414 213 562. vignette|L’hypoténuse d’un triangle rectangle isocèle de côté 1 vaut . Le calcul d’une valeur approchée de a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées.
Lemme (mathématiques)Un lemme, en mathématiques et en logique mathématique, est un résultat intermédiaire sur lequel on s'appuie pour conduire la démonstration d'un théorème plus important. Dans l'Antiquité grecque, lemme (en λῆμμα) était un terme de logique : il désignait la majeure du syllogisme, c'est-à-dire la première assertion. Dans la dialectique grecque, le lemme, le prolemme et l'épiphore sont les trois parties de l'argument.
Démonstration automatique de théorèmesLa démonstration automatique de théorèmes (DAT) est l'activité d'un logiciel qui démontre une proposition qu'on lui soumet, sans l'aide de l'utilisateur. Les démonstrateurs automatiques de théorème ont résolu des conjectures intéressantes difficiles à établir, certaines ayant échappé aux mathématiciens pendant longtemps ; c'est le cas, par exemple, de la , démontrée en 1996 par le logiciel EQP.
Primitive notionIn mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory, relations between primitive notions are restricted by axioms. Some authors refer to the latter as "defining" primitive notions by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress (per the regress problem).
Nombres premiers jumeauxEn mathématiques, deux nombres premiers jumeaux sont deux nombres premiers qui ne diffèrent que de 2. Hormis pour le couple (2, 3), cet écart entre nombres premiers de 2 est le plus petit possible. Les plus petits nombres premiers jumeaux sont 3 et 5, 5 et 7, 11 et 13. En , les plus grands nombres premiers jumeaux connus, découverts en 2016 dans le cadre du projet de calcul distribué PrimeGrid, sont × 2 ± 1 ; ils possèdent chiffres en écriture décimale.