Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore le contrôle des variables confondantes dans l'épidémiologie spatiale pour isoler des facteurs de santé spécifiques et discute des méthodes d'ajustement.
Discute de la méthode de gradient pour l'optimisation, en se concentrant sur son application dans l'apprentissage automatique et les conditions de convergence.
Introduit une analyse de régression, couvrant les modèles linéaires et non linéaires, la régression de Poisson et l'analyse du temps de défaillance à l'aide de divers ensembles de données.
Couvre les variables instrumentales, abordant les problèmes d'endogénéité dans l'analyse de régression à travers des techniques d'estimation et des exemples pratiques.
Explique la machine vectorielle de soutien et la régression logistique pour les tâches de classification, en mettant l'accent sur la maximisation de la marge et la minimisation des risques.
Introduit les bases de la régression linéaire, de l'interprétation des coefficients, des hypothèses, des transformations et de la «différence des différences» pour l'analyse causale.