Homogeneous relationIn mathematics, a homogeneous relation (also called endorelation) on a set X is a binary relation between X and itself, i.e. it is a subset of the Cartesian product X × X. This is commonly phrased as "a relation on X" or "a (binary) relation over X". An example of a homogeneous relation is the relation of kinship, where the relation is between people. Common types of endorelations include orders, graphs, and equivalences. Specialized studies of order theory and graph theory have developed understanding of endorelations.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Relation transitiveEn mathématiques, une relation transitive est une relation binaire pour laquelle une suite d'objets reliés consécutivement aboutit à une relation entre le premier et le dernier. Formellement, la propriété de transitivité s'écrit, pour une relation définie sur un ensemble : Une relation binaire non transitive est donc une relation pour laquelle la propriété universelle ci-dessus est fausse, c'est-à-dire qu'il existe un élément en relation avec un deuxième qui lui-même est en relation avec un troisième, sans que le premier soit en relation avec le troisième : C'est le cas de l'orthogonalité de droites, par exemple.
ComparabilityIn mathematics, two elements x and y of a set P are said to be comparable with respect to a binary relation ≤ if at least one of x ≤ y or y ≤ x is true. They are called incomparable if they are not comparable. A binary relation on a set is by definition any subset of Given is written if and only if in which case is said to be to by An element is said to be , or (), to an element if or Often, a symbol indicating comparison, such as (or and many others) is used instead of in which case is written in place of which is why the term "comparable" is used.
PréordreEn mathématiques, un préordre est une relation binaire réflexive et transitive. C'est-à-dire que si E est un ensemble, une relation binaire sur E est un préordre lorsque : (réflexivité) ; (transitivité). Un ensemble préordonné est un ensemble muni d'un préordre, ou plus formellement un couple où désigne un ensemble et un préordre sur . Les ordres sont les préordres antisymétriques. Les relations d'équivalence sont les préordres symétriques. Dans un anneau commutatif, la relation « divise » est une relation de préordre.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Extension linéaireDans la branche des mathématiques de la théorie des ordres, une extension linéaire d'un ordre partiel est un ordre total (ou ordre linéaire) qui est compatible avec l'ordre partiel. Un exemple classique est l'ordre lexicographique des ensembles totalement ordonnés qui est une extension linéaire de leur ordre produit. Étant donnés des ordres partiels quelconques ≤ et ≤* sur un ensemble X, ≤* est une extension linéaire de ≤ si et seulement si (1) ≤* est un ordre total et (2) pour tout x et y dans X, si , alors .
Nombre de BellEn mathématiques, le n-ième nombre de Bell (du nom de Eric Temple Bell) est le nombre de partitions d'un ensemble à n éléments distincts ou, ce qui revient au même, le nombre de relations d'équivalence sur un tel ensemble. Ces nombres forment la suite d'entiers de l'OEIS, dont on peut calculer à la main les premiers termes :Le premier vaut 1 car il existe exactement une partition de l'ensemble vide : la partition vide, formée d'aucune partie. En effet, ses éléments (puisqu'il n'y en a aucun) sont bien non vides et disjoints deux à deux, et de réunion vide.
Fonction monotoneEn mathématiques, une fonction monotone est une fonction entre ensembles ordonnés qui préserve ou renverse l'ordre. Dans le premier cas, on parle de fonction croissante et dans l'autre de fonction décroissante. Ce concept est tout d'abord apparu en analyse réelle pour les fonctions numériques et a été généralisé ensuite dans le cadre plus abstrait de la théorie des ordres. Intuitivement (voir les figures ci-contre), la représentation graphique d'une fonction monotone sur un intervalle est une courbe qui « monte » constamment ou « descend » constamment.