Pulsarthumb|Vue artistique d'un pulsar tirant de la matière d'une étoile proche. Un pulsar est un objet astronomique produisant un signal périodique allant de l'ordre de la milliseconde à quelques dizaines de secondes. Ce serait une étoile à neutrons tournant très rapidement sur elle-même (période typique de l'ordre de la seconde, voire beaucoup moins pour les pulsars milliseconde) et émettant un fort rayonnement électromagnétique dans la direction de son axe magnétique.
Interféromètre astronomiqueUn interféromètre astronomique est un réseau de télescopes ou segments de miroirs qui agissent ensemble aux fins de détection avec une résolution plus grande, via l'interférométrie. L'avantage d'un interféromètre est que son pouvoir de résolution est le même que celui d'un télescope avec la même ouverture que s'il englobait tous les sous-composants de l'interféromètre. Le désavantage principal est qu'il ne collecte pas autant de photons, donc ce type d'instruments est surtout utile pour des objets plus lumineux, tels des étoiles binaires.
Centre galactiquevignette|droite|Centre galactique, image infrarouge. Le centre galactique est le centre de rotation du disque de la Voie lactée, galaxie comprenant la planète Terre. Il est situé à une distance de , soit , du Soleil dans la région lumineuse la plus étendue de la Voie lactée, dans la direction de la constellation zodiacale du Sagittaire. En raison de la présence de poussières sur la ligne de visée, responsables d'environ 30 magnitudes d'atténuation de la luminosité dans le spectre visible, le centre galactique n'est pas observable en longueurs d'onde visibles, ultraviolettes et rayons X.
Interférométrie à très longue baseL'interférométrie à très longue base (ou VLBI, Very Long Baseline Interferometry) est un procédé d'interférométrie astronomique utilisé en radioastronomie, dans lequel les données reçues de chaque antenne du réseau sont marquées avec une heure précise, généralement fournie par une horloge atomique locale, puis enregistrées sur bande magnétique ou disque dur. Les enregistrements de chaque antenne sont ensuite rassemblés et corrélés afin de produire l'image résultante.
Sagittarius A*(qu'on lit , abrégé en ) est une source intense d'ondes radio, située dans la direction de la constellation zodiacale du Sagittaire (coordonnées J2000 : ascension droite , déclinaison -29,00775°) et localisée au centre de la Voie lactée, à environ () du Système solaire. Initialement non résolue au sein d'une zone d'émission radio plus vaste dénommée , elle est par la suite distinguée de l'ensemble des sources formant cette zone d'émission, dont et .
Synthèse d'ouverturethumb|300px|La plupart des systèmes utilisant la synthèse d'ouverture tirent avantage de la rotation de la Terre pour augmenter le nombre d'angles de vue dans l'observation. Ici, les télescopes A et B se déplacent avec le temps : en enregistrant les données à différents instants, on a accès à des mesures faites avec des angles de séparation différents. La synthèse d'ouverture est un procédé d'interférométrie qui permet de regrouper les données issues d'un ensemble de télescopes pour produire une image qui a la même résolution angulaire que celle qu'aurait un télescope faisant la taille de l'ensemble tout entier.
Rayonnement synchrotronLe rayonnement synchrotron, ou rayonnement de courbure, est un rayonnement électromagnétique émis par une particule chargée qui se déplace dans un champ magnétique et dont la trajectoire est déviée par ce champ magnétique. Ce rayonnement est émis en particulier par des électrons qui tournent dans un anneau de stockage. Puisque ces particules modifient régulièrement leur course, leur vitesse change régulièrement, elles émettent alors de l'énergie (sous forme de photons) qui correspond à l’accélération subie.
Radiogalaxievignette|Image en fausse couleur de la radiogalaxie se trouvant le plus près de la Terre, montrant des ondes radio (rouge), infrarouges de (vert) et une émission de allant de (bleue). Le rayonnement de corps noir des provenant des gaz chauds ainsi que les émissions non-thermiques provenant d'un faisceau d'électrons relativistes peuvent être aperçu dans les « coquilles » bleues autour des lobes radio, particulièrement au sud (dans le bas).
M87Messier 87 (aussi dénommée M87, NGC 4486, ou radiogalaxie Virgo A) est une galaxie elliptique supergéante. Elle a été découverte en 1779 par l'astronome allemand Johann Gottfried Koehler. Située à de la Terre, c'est la plus grande et la plus lumineuse des galaxies de l'amas de la Vierge. Contrairement aux galaxies spirales en forme de disque, M87 n'a pas de et a une forme elliptique. En son cœur, elle possède un trou noir supermassif qui constitue l'élément principal d'un noyau galactique actif, une forte source de rayonnement dans toutes les longueurs d'onde particulièrement de micro-ondes.
Extinction (astronomie)En astronomie, l'extinction désigne le phénomène – dû à la matière (du gaz et de la poussière en grande majorité) située entre un objet céleste et l'observateur – responsable de l'absorption et de la diffusion de la lumière émise par les objets astronomiques. Pour un observateur situé sur Terre, l'extinction est provoquée à la fois par le milieu interstellaire et par l'atmosphère terrestre. La forte extinction de certaines régions sur spectre électromagnétique (telles que les rayons X, les ultraviolets ou les infrarouges) provoquée par l'atmosphère requiert l'utilisation de télescopes spatiaux.