We determine the bounded cohomology of the group of homeomorphisms of certain low-dimensional manifolds. In particular, for the group of orientation-preserving homeomorphisms of the circle and of the closed 2-disc, it is isomorphic to the polynomial ring g ...
In this article we study Sobolev metrics of order one on diffeomorphism groups on the real line. We prove that the space equipped with the homogeneous Sobolev metric of order one is a flat space in the sense of Riemannian geometry, as it is isometric to an ...
Two dynamical systems are topologically equivalent when their phase-portraits can be morphed into each other by a homeomorphic coordinate transformation on the state space. The induced equivalence classes capture qualitative properties such as stability or ...
Dynamical systems are topologically equivalent when their orbits can be mapped onto each other via a homeomorphic change of coordinates. We will show that in general, closed-loop systems resulting from Linear Quadratic Optimal Control problems are all topo ...
We propose a new formulation to the non-rigid structure-from-motion problem that only requires the deforming surface to meaning that its differential structure is preserved. This is a much weaker assumption than the traditional ones of isometry or conforma ...
We derive a covariance formula for the class of 'topological events' of smooth Gaussian fields on manifolds; these are events that depend only on the topology of the level sets of the field, for example, (i) crossing events for level or excursion sets, (ii ...
We prove a version of Myers-Steenrod's theorem for Finsler manifolds under the minimal regularity hypothesis. In particular we show that an isometry between C-k,C-alpha-smooth (or partially smooth) Finsler metrics, with k + alpha > 0, k is an element of N ...
In this paper we show that the incompressible Euler equation on the Sobolev space H-s(R-n), s> n/2+1, can be expressed in Lagrangian coordinates as a geodesic equation on an infinite dimensional manifold. Moreover the Christoffel map describing the geodesi ...
This article provides an overview of various notions of shape spaces, including the space of parametrized and unparametrized curves, the space of immersions, the diffeomorphism group and the space of Riemannian metrics. We discuss the Riemannian metrics th ...
We provide a smoothening criterion for group actions on manifolds by singular diffeomorphisms. We prove that if a countable group Gamma has the fixed point property FW for walls (for example, if it has property(T)), every aperiodic action of Gamma by diffe ...