Polygone de PetrieEn géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions. Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois.
Composé polyédriqueUn composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Diagramme de Coxeter-DynkinEn géométrie, un diagramme de Coxeter-Dynkin est un graphe représentant un ensemble relationnel de miroirs (ou d'hyperplans de réflexion) dans l'espace pour une construction kaléidoscopique. En tant que graphe lui-même, le diagramme représente les groupes de Coxeter, chaque nœud du graphe représente un miroir (facette du domaine) et chaque branche du graphe représente l'ordre de l'angle diédral entre deux miroirs (sur une arête du domaine). En plus, les graphes ont des anneaux (cercles) autour des nœuds pour les miroirs actifs représentant un polytope précis.
Pavage de l'espaceUn pavage de l'espace est un ensemble de portions de l'espace euclidien de , par exemple des polyèdres, dont l'union est l'espace tout entier, sans interpénétration. Dans cet emploi le terme pavage est une généralisation à trois dimensions du concept de pavage du plan, lequel dérive directement du sens commun de , le recouvrement d'un sol par des pavés jointifs (des blocs de forme grossièrement cubique) : la surface d'un sol pavé se présente comme un assemblage de carrés jointifs.
Polytope régulierdroite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.